Do you want to publish a course? Click here

We use inelastic neutron scattering to study the effect of an in-plane magnetic field on the magnetic resonance in optimally doped superconductors FeSe$_{0.4}$Te$_{0.6}$ ($T_c=14$ K) and BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ ($T_c=20$ K). While the magnetic field up to 14.5 Tesla does not change the energy of the resonance, it particially suppresses $T_c$ and the corresponding superconductivity-induced intensity gain of the mode. However, we find no direct evidence for the field-induced spin-1 Zeeman splitting of the resonance. Therefore, it is still unclear if the resonance is the long-sought singlet-triplet excitation directly coupled to the superconducting electron Cooper pairs.
We use cold neutron spectroscopy to study the low-energy spin excitations of superconducting (SC) FeSe$_{0.4}$Te$_{0.6}$ and essentially non-superconducting (NSC) FeSe$_{0.45}$Te$_{0.55}$. In contrast to BaFe$_{2-x}$(Co,Ni)$_{x}$As$_2$, where the low-energy spin excitations are commensurate both in the SC and normal state, the normal-state spin excitations in SC FeSe$_{0.4}$Te$_{0.6}$ are incommensurate and show an hourglass dispersion near the resonance energy. Since similar hourglass dispersion is also found in the NSC FeSe$_{0.45}$Te$_{0.55}$, we argue that the observed incommensurate spin excitations in FeSe$_{1-x}$Te$_{x}$ are not directly associated with superconductivity. Instead, the results can be understood within a picture of Fermi surface nesting assuming extremely low Fermi velocities and spin-orbital coupling.
We use neutron scattering to show that replacing the larger arsenic with smaller phosphorus in CeFeAs(1-x)P(x)O simultaneously suppresses the AF order and orthorhombic distortion near x = 0.4, providing evidence for a magnetic quantum critical point. Furthermore, we find that the pnictogen height in iron arsenide is an important controlling parameter for their electronic and magnetic properties, and may play an important role in electron pairing and superconductivity.
We use neutron spectroscopy to determine the nature of the magnetic excitations in superconducting BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ ($T_{c}=20$ K). Above $T_{c}$ the excitations are gapless and centered at the commensurate antiferromagnetic wave vector of the parent compound, while the intensity exhibits a sinusoidal modulation along the c-axis. As the superconducting state is entered a spin gap gradually opens, whose magnitude tracks the $T$-dependence of the superconducting gap observed by angle resolved photoemission. Both the spin gap and magnetic resonance energies are temperature textit{and} wave vector dependent, but their ratio is the same within uncertainties. These results suggest that the spin resonance is a singlet-triplet excitation related to electron pairing and superconductivity.
We use bulk magnetic susceptibility, electronic specific heat, and neutron scattering to study structural and magnetic phase transitions in Fe$_{1+y}$Se% $_x$Te$_{1-x}$. Fe$_{1.068}$Te exhibits a first order phase transition near 67 K with a tetragonal to monoclinic structural transition and simultaneously develops a collinear antiferromagnetic (AF) order responsible for the entropy change across the transition. Systematic studies of FeSe$%_{1-x}$Te$_x$ system reveal that the AF structure and lattice distortion in these materials are different from those of FeAs-based pnictides. These results call into question the conclusions of present density functional calculations, where FeSe$_{1-x}$Te$_x$ and FeAs-based pnictides are expected to have similar Fermi surfaces and therefore the same spin-density-wave AF order.
We report inelastic neutron scattering studies of magnetic excitations in antiferromagnetically ordered SrFe$_{2}$As$_{2}$ ($T_{N}=220$ K), the parent compound of the FeAs-based superconductors. At low temperatures (T=7 K), the spectrum of magnetic excitations $S(Q,hbar omega)$ consists of a Bragg peak at the elastic position ($hbar omega =0$ meV), a spin gap ($ Delta leq 6.5$ meV), and sharp spin wave excitations at higher energies. Based on the observed dispersion relation, we estimate the effective magnetic exchange coupling using a Heisenberg model. On warming across $T_{N} $, the low temperature spin gap rapidly closes, with weak critical scattering and spin-spin correlations in the paramagnetic state. The antiferromagnetic order in SrFe$_{2}$As$_{2}$ is therefore consistent with a first order phase transition, similar to the structural lattice distortion.
We use thermodynamic and neutron scattering measurements to study the effect of oxygen annealing on the superconductivity and magnetism in Pr$_{0.88}$LaCe$_{0.12}$CuO$_{4-delta}$. Although the transition temperature $T_c$ measured by susceptibility and superconducting coherence length increase smoothly with gradual oxygen removal from the annealing process, bulk superconductivity, marked by a specific heat anomaly at $T_c$ and the presence of a neutron magnetic resonance, only appears abruptly when $T_c$ is close to the largest value. These results suggest that the effect of oxygen annealing must be first determined in order to establish a Ce-doping dependence of antiferromagnetism and superconductivity phase diagram for electron-doped copper oxides.
We use inelastic neutron scattering to study the temperature dependence of the spin excitations of a detwinned superconducting YBa$_2$Cu$_3$O$_{6.45}$ ($T_c=48$ K). In contrast to earlier work on YBa$_2$Cu$_3$O$_{6.5}$ ($T_c=58$ K), where the prominent features in the magnetic spectra consist of a sharp collective magnetic excitation termed ``resonance and a large ($hbaromegaapprox 15$ meV) superconducting spin gap, we find that the spin excitations in YBa$_2$Cu$_3$O$_{6.45}$ are gapless and have a much broader resonance. Our detailed mapping of magnetic scattering along the $a^ast$/$b^ast$-axis directions at different energies reveals that spin excitations are unisotropic and consistent with the ``hourglass-like dispersion along the $a^ast$-axis direction near the resonance, but they are isotropic at lower energies. Since a fundamental change in the low-temperature normal state of YBa$_2$Cu$_3$O$_{6+y}$ when superconductivity is suppressed takes place at $ysim0.5$ with a metal-to-insulator crossover (MIC), where the ground state transforms from a metallic to an insulating-like phase, our results suggest a clear connection between the large change in spin excitations and the MIC. The resonance therefore is a fundamental feature of metallic ground state superconductors and a consequence of high-$T_c$ superconductivity.
The quantum spin fluctuations of the S = 1/2 Cu ions are important in determining the physical properties of the high-transition temperature (high-Tc) copper oxide superconductors, but their possible role in the electron pairing for superconductivity remains an open question. The principal feature of the spin fluctuations in optimally doped high-Tc superconductors is a well defined magnetic resonance whose energy (Er) tracks Tc (as the composition is varied) and whose intensity develops like an order parameter in the superconducting state. We show that the suppression of superconductivity and its associated condensation energy by a magnetic field in the electron-doped high-Tc superconductor, Pr0.88LaCe0.12CuO4-d (Tc = 24 K), is accompanied by the complete suppression of the resonance and the concomitant emergence of static antiferromagnetic (AF) order. Our results demonstrate that the resonance is intimately related to the superconducting condensation energy, and thus suggest that it plays a role in the electron pairing and superconductivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا