Do you want to publish a course? Click here

We extend the validity of the Penrose singularity theorem to spacetime metrics of regularity $C^{1,1}$. The proof is based on regularisation techniques, combined with recent results in low regularity causality theory.
We provide a detailed proof of Hawkings singularity theorem in the regularity class $C^{1,1}$, i.e., for spacetime metrics possessing locally Lipschitz continuous first derivatives. The proof uses recent results in $C^{1,1}$-causality theory and is based on regularisation techniques adapted to the causal structure.
We study geodesics in the complete family of nonexpanding impulsive gravitational waves propagating in spaces of constant curvature, that is Minkowski, de Sitter and anti-de Sitter universes. Employing the continuous form of the metric we prove existence and uniqueness of continuously differentiable geodesics (in the sense of Filippov) and use a C^1-matching procedure to explicitly derive their form.
We investigate a class of gravitational pp-waves which represent the exterior vacuum field of spinning particles moving with the speed of light. Such exact spacetimes are described by the original Brinkmann form of the pp-wave metric including the often neglected off-diagonal terms. We put emphasis on a clear physical and geometrical interpretation of these off-diagonal metric components. We explicitly analyze several new properties of these spacetimes associated with the spinning character of the source, such as rotational dragging of frames, geodesic deviation, impulsive limits and the corresponding behavior of geodesics.
470 - Roland Steinbauer 2013
We prove that the geodesic equation for any semi-Riemannian metric of regularity $C^{0,1}$ possesses $C^1$-solutions in the sense of Filippov.
We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to $C^{1,1}$. Our approach is based on regularisations of the metric adapted to the causal structure.
We define the notion of geodesic completeness for semi-Riemannian metrics of low regularity in the framework of the geometric theory of generalized functions. We then show completeness of a wide class of impulsive gravitational wave space-times.
We consider the geodesic equation in impulsive pp-wave space-times in Rosen form, where the metric is of Lipschitz regularity. We prove that the geodesics (in the sense of Caratheodory) are actually continuously differentiable, thereby rigorously justifying the $C^1$-matching procedure which has been used in the literature to explicitly derive the geodesics in space-times of this form.
We consider wave equations on Lorentzian manifolds in case of low regularity. We first extend the classical solution theory to prove global unique solvability of the Cauchy problem for distributional data and right hand side on smooth globally hyperbolic space-times. Then we turn to the case where the metric is non-smooth and present a local as well as a global existence and uniqueness result for a large class of Lorentzian manifolds with a weakly singular, locally bounded metric in Colombeaus algebra of generalized functions.
We compare two approaches to Semi-Riemannian metrics of low regularity. The maximally reasonable distributional setting of Geroch and Traschen is shown to be consistently contained in the more general setting of nonlinear distributional geometry in the sense of Colombeau.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا