Do you want to publish a course? Click here

We determine the multiplicity of the irreducible representation V(n) of the simple Lie algebra sl(2,C) as a direct summand of its fourth exterior power $Lambda^4 V(n)$. The multiplicity is 1 (resp. 2) if and only if n = 4, 6 (resp. n = 8, 10). For these n we determine the multilinear polynomial identities of degree $le 7$ satisfied by the sl(2,C)-invariant alternating quaternary algebra structures obtained from the projections $Lambda^4 V(n) to V(n)$. We represent the polynomial identities as the nullspace of a large integer matrix and use computational linear algebra to find the canonical basis of the nullspace.
For n even, we prove Pozhidaevs conjecture on the existence of associative enveloping algebras for simple n-Lie algebras. More generally, for n even and any (n+1)-dimensional n-Lie algebra L, we construct a universal associative enveloping algebra U(L) and show that the natural map from L to U(L) is injective. We use noncommutative Grobner bases to present U(L) as a quotient of the free associative algebra on a basis of L and to obtain a monomial basis of U(L). In the last section, we provide computational evidence that the construction of U(L) is much more difficult for n odd.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا