Do you want to publish a course? Click here

Existing summarization systems mostly generate summaries purely relying on the content of the source document. However, even for humans, we usually need some references or exemplars to help us fully understand the source document and write summaries in a particular format. But how to find the high-quality exemplars and incorporate them into summarization systems is still challenging and worth exploring. In this paper, we propose RetrievalSum, a novel retrieval enhanced abstractive summarization framework consisting of a dense Retriever and a Summarizer. At first, several closely related exemplars are retrieved as supplementary input to help the generation model understand the text more comprehensively. Furthermore, retrieved exemplars can also play a role in guiding the model to capture the writing style of a specific corpus. We validate our method on a wide range of summarization datasets across multiple domains and two backbone models: BERT and BART. Results show that our framework obtains significant improvement by 1.38~4.66 in ROUGE-1 score when compared with the powerful pre-trained models, and achieve new state-of-the-art on BillSum. Human evaluation demonstrates that our retrieval enhanced model can better capture the domain-specific writing style.
194 - Ming Zhong , Yang Liu , Yichong Xu 2021
Dialogue is an essential part of human communication and cooperation. Existing research mainly focuses on short dialogue scenarios in a one-on-one fashion. However, multi-person interactions in the real world, such as meetings or interviews, are frequently over a few thousand words. There is still a lack of corresponding research and powerful tools to understand and process such long dialogues. Therefore, in this work, we present a pre-training framework for long dialogue understanding and summarization. Considering the nature of long conversations, we propose a window-based denoising approach for generative pre-training. For a dialogue, it corrupts a window of text with dialogue-inspired noise, and guides the model to reconstruct this window based on the content of the remaining conversation. Furthermore, to process longer input, we augment the model with sparse attention which is combined with conventional attention in a hybrid manner. We conduct extensive experiments on five datasets of long dialogues, covering tasks of dialogue summarization, abstractive question answering and topic segmentation. Experimentally, we show that our pre-trained model DialogLM significantly surpasses the state-of-the-art models across datasets and tasks.
A self-interacting dark matter halo can experience gravothermal collapse, resulting in a central core with an ultrahigh density. It can further contract and collapse into a black hole, a mechanism proposed to explain the origin of supermassive black holes. We study dynamical instability of the core in general relativity. We use a truncated Maxwell-Boltzmann distribution to model the dark matter distribution and solve the Tolman-Oppenheimer-Volkoff equation. For given model parameters, we obtain a series of equilibrium configurations and examine their dynamical instability based on considerations of total energy, binding energy, fractional binding energy, and adiabatic index. The numerical results from our semi-analytical method are in good agreement with those from fully relativistic N-body simulations. We further show for the instability to occur in the classical regime, the boundary temperature of the core should be at least $10%$ of the mass of dark matter particles; for a $10^9~{rm M_odot}$ seed black hole, the particle mass needs to be larger than a few keV. These results can be used to constrain different collapse models, in particular, those with dissipative dark matter interactions.
47 - Guoce Xin , Yueming Zhong 2021
Let $L(m,n)$ denote Youngs lattice consisting of all partitions whose Young diagrams are contained in the $mtimes n$ rectangle. It is a well-known result that the poset $L(m,n)$ is rank symmetric, rank unimodal, and Sperner. A direct proof of this result by finding an explicit order matching of $L(m,n)$ is an outstanding open problem. In this paper, we present an explicit order matching $varphi$ for $L(3,n)$ by several different approaches, and give chain tableau version of $varphi$ that is very helpful in finding patterns. It is surprise that the greedy algorithm and a recursive knead process also give the same order matching. Our methods extend for $L(4,n)$.
Video-text retrieval plays an essential role in multi-modal research and has been widely used in many real-world web applications. The CLIP (Contrastive Language-Image Pre-training), an image-language pre-training model, has demonstrated the power of visual concepts learning from web collected image-text datasets. In this paper, we propose a CLIP4Clip model to transfer the knowledge of the CLIP model to video-language retrieval in an end-to-end manner. Several questions are investigated via empirical studies: 1) Whether image feature is enough for video-text retrieval? 2) How a post-pretraining on a large-scale video-text dataset based on the CLIP affect the performance? 3) What is the practical mechanism to model temporal dependency between video frames? And 4) The Hyper-parameters sensitivity of the model on video-text retrieval task. Extensive experimental results present that the CLIP4Clip model transferred from the CLIP can achieve SOTA results on various video-text retrieval datasets, including MSR-VTT, MSVC, LSMDC, ActivityNet, and DiDeMo. We release our code at https://github.com/ArrowLuo/CLIP4Clip.
177 - Ming Zhong , Da Yin , Tao Yu 2021
Meetings are a key component of human collaboration. As increasing numbers of meetings are recorded and transcribed, meeting summaries have become essential to remind those who may or may not have attended the meetings about the key decisions made and the tasks to be completed. However, it is hard to create a single short summary that covers all the content of a long meeting involving multiple people and topics. In order to satisfy the needs of different types of users, we define a new query-based multi-domain meeting summarization task, where models have to select and summarize relevant spans of meetings in response to a query, and we introduce QMSum, a new benchmark for this task. QMSum consists of 1,808 query-summary pairs over 232 meetings in multiple domains. Besides, we investigate a locate-then-summarize method and evaluate a set of strong summarization baselines on the task. Experimental results and manual analysis reveal that QMSum presents significant challenges in long meeting summarization for future research. Dataset is available at url{https://github.com/Yale-LILY/QMSum}.
Previous work for text summarization in scientific domain mainly focused on the content of the input document, but seldom considering its citation network. However, scientific papers are full of uncommon domain-specific terms, making it almost impossible for the model to understand its true meaning without the help of the relevant research community. In this paper, we redefine the task of scientific papers summarization by utilizing their citation graph and propose a citation graph-based summarization model CGSum which can incorporate the information of both the source paper and its references. In addition, we construct a novel scientific papers summarization dataset Semantic Scholar Network (SSN) which contains 141K research papers in different domains and 661K citation relationships. The entire dataset constitutes a large connected citation graph. Extensive experiments show that our model can achieve competitive performance when compared with the pretrained models even with a simple architecture. The results also indicates the citation graph is crucial to better understand the content of papers and generate high-quality summaries.
Since many real world networks are evolving over time, such as social networks and user-item networks, there are increasing research efforts on dynamic network embedding in recent years. They learn node representations from a sequence of evolving graphs but not only the latest network, for preserving both structural and temporal information from the dynamic networks. Due to the lack of comprehensive investigation of them, we give a survey of dynamic network embedding in this paper. Our survey inspects the data model, representation learning technique, evaluation and application of current related works and derives common patterns from them. Specifically, we present two basic data models, namely, discrete model and continuous model for dynamic networks. Correspondingly, we summarize two major categories of dynamic network embedding techniques, namely, structural-first and temporal-first that are adopted by most related works. Then we build a taxonomy that refines the category hierarchy by typical learning models. The popular experimental data sets and applications are also summarized. Lastly, we have a discussion of several distinct research topics in dynamic network embedding.
Observations show that supermassive black holes (SMBHs) with a mass of $sim10^9 M_odot$ exist when the Universe is just $6%$ of its current age. We propose a scenario where a self-interacting dark matter halo experiences gravothermal instability and its central region collapses into a seed black hole. The presence of baryons in protogalaxies could significantly accelerate the gravothermal evolution of the halo and shorten collapse timescales. The central halo could dissipate its angular momentum remnant via viscosity induced by the self-interactions. The host halo must be on high tails of density fluctuations, implying that high-$z$ SMBHs are expected to be rare in this scenario. We further derive conditions for triggering general relativistic instability of the collapsed region. Our results indicate that self-interacting dark matter can provide a unified explanation for diverse dark matter distributions in galaxies today and the origin of SMBHs at redshifts $zsim6-7$.
Neural network-based models augmented with unsupervised pre-trained knowledge have achieved impressive performance on text summarization. However, most existing evaluation methods are limited to an in-domain setting, where summarizers are trained and evaluated on the same dataset. We argue that this approach can narrow our understanding of the generalization ability for different summarization systems. In this paper, we perform an in-depth analysis of characteristics of different datasets and investigate the performance of different summarization models under a cross-dataset setting, in which a summarizer trained on one corpus will be evaluated on a range of out-of-domain corpora. A comprehensive study of 11 representative summarization systems on 5 datasets from different domains reveals the effect of model architectures and generation ways (i.e. abstractive and extractive) on model generalization ability. Further, experimental results shed light on the limitations of existing summarizers. Brief introduction and supplementary code can be found in https://github.com/zide05/CDEvalSumm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا