Do you want to publish a course? Click here

Seeding Supermassive Black Holes with Self-Interacting Dark Matter: A Unified Scenario with Baryons

89   0   0.0 ( 0 )
 Added by Hai-Bo Yu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations show that supermassive black holes (SMBHs) with a mass of $sim10^9 M_odot$ exist when the Universe is just $6%$ of its current age. We propose a scenario where a self-interacting dark matter halo experiences gravothermal instability and its central region collapses into a seed black hole. The presence of baryons in protogalaxies could significantly accelerate the gravothermal evolution of the halo and shorten collapse timescales. The central halo could dissipate its angular momentum remnant via viscosity induced by the self-interactions. The host halo must be on high tails of density fluctuations, implying that high-$z$ SMBHs are expected to be rare in this scenario. We further derive conditions for triggering general relativistic instability of the collapsed region. Our results indicate that self-interacting dark matter can provide a unified explanation for diverse dark matter distributions in galaxies today and the origin of SMBHs at redshifts $zsim6-7$.



rate research

Read More

A perfect irrotational fluid with the equation of state of dust, Irrotational Dark Matter (IDM), is incapable of virializing and instead forms a cosmoskeleton of filaments with supermassive black holes at the joints. This stark difference from the standard cold dark matter (CDM) scenario arises because IDM must exhibit potential flow at all times, preventing shell-crossing from occurring. This scenario is applicable to general non-oscillating scalar-field theories with a small sound speed. Our model of combined IDM and CDM components thereby provides a solution to the problem of forming the observed billion-solar-mass black holes at redshifts of six and higher. In particular, as a result of the reduced vortical flow, the growth of the black holes is expected to be more rapid at later times as compared to the standard scenario.
We generalize the Thomas-Fermi approach to galaxy structure to include self-consistently and non-linearly central supermassive black holes. This approach naturally incorporates the quantum pressure of the warm dark matter (WDM) particles and shows its full powerful and clearness in the presence of supermassive black holes (SPMHs). We find the main galaxy and central black hole magnitudes: halo radius r_h , halo mass M_h, black hole mass M_BH, velocity dispersion, phase space density, with their realistic astrophysical values, masses and sizes over a wide galaxy range. The SMBH masses arise naturally in this framework. Our extensive numerical calculations and detailed analytic resolution show that with SMBHs, both WDM regimes: classical (Boltzmann dilute) and quantum (compact) do necessarily co-exist in any galaxy: from the smaller and compact galaxies to the largest ones. The transition from the quantum to the classical region occurs precisely at the same point r_A where the chemical potential vanishes. A novel halo structure with three regions shows up: A small quantum compact core of radius r_A around the SMBH, followed by a less compact region till the BH influence radius r_i, and then for r> r_i the known halo galaxy shows up with its astrophysical size. Three representative families of galaxy plus central SMBH solutions are found and analyzed:small, medium and large galaxies having SMBH masses of 10^5, 10^7 and 10^9 M_sun respectively. A minimum galaxy size and mass ~ 10^7 M_sun larger than the one without SMBH is found. Small galaxies in the range 10^4 M_sun < M_h < 10^7 M_sun cannot harbor central SMBHs. We find novel scaling M_BH - r_h - M_h relations. The galaxy equation of state is derived: The pressure P(r) takes huge values in the SMBH vecinity and then sharply decreases entering the classical region following a local perfect gas behaviour.(Abridged)
A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to heavy leptons either the self-interaction may not be strong enough to solve the small scale structure motivation or a dark disk cannot be present in the Milky Way.
We show that a subdominant component of dissipative dark matter resembling the Standard Model can form many intermediate-mass black hole seeds during the first structure formation epoch. We also observe that, in the presence of this matter sector, the black holes will grow at a much faster rate with respect to the ordinary case. These facts can explain the observed abundance of supermassive black holes feeding high-redshift quasars. The scenario will have interesting observational consequences for dark substructures and gravitational wave production.
We present the first simulated galaxy clusters (M_200 > 10^14 Msun) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا