Do you want to publish a course? Click here

Quantum codes with low-weight stabilizers known as LDPC codes have been actively studied recently due to their simple syndrome readout circuits and potential applications in fault-tolerant quantum computing. However, all families of quantum LDPC codes known to this date suffer from a poor distance scaling limited by the square-root of the code length. This is in a sharp contrast with the classical case where good families of LDPC codes are known that combine constant encoding rate and linear distance. Here we propose the first family of good quantum codes with low-weight stabilizers. The new codes have a constant encoding rate, linear distance, and stabilizers acting on at most $sqrt{n}$ qubits, where $n$ is the code length. For comparison, all previously known families of good quantum codes have stabilizers of linear weight. Our proof combines two techniques: randomized constructions of good quantum codes and the homological product operation from algebraic topology. We conjecture that similar methods can produce good stabilizer codes with stabilizer weight $n^a$ for any $a>0$. Finally, we apply the homological product to construct new small codes with low-weight stabilizers.
We introduce and study a class of anyon models that are a natural generalization of Ising anyons and Majorana fermion zero modes. These models combine an Ising anyon sector with a sector associated with $SO(m)_2$ Chern-Simons theory. We show how they can arise in a simple scenario for electron fractionalization and give a complete account of their quasiparticles types, fusion rules, and braiding. We show that the image of the braid group is finite for a collection of $2n$ fundamental quasiparticles and is a proper subgroup of the metaplectic representation of $Sp(2n-2,mathbb{F}_m)ltimes H(2n-2,mathbb{F}_m)$, where $Sp(2n-2,mathbb{F}_m)$ is the symplectic group over the finite field $mathbb{F}_m$ and $H(2n-2,mathbb{F}_m)$ is the extra special group (also called the $(2n-1)$-dimensional Heisenberg group) over $mathbb{F}_m$. Moreover, the braiding of fundamental quasiparticles can be efficiently simulated classically. However, computing the result of braiding a certain type of composite quasiparticle is $# P$-hard, although it is not universal for quantum computation because it has a finite braid group image. This a rare example of a topological phase that is not universal for quantum computation through braiding but nevertheless has $# P$-hard link invariants. We argue that our models are closely related to recent analyses finding non-Abelian anyonic properties for defects in quantum Hall systems, generalizing Majorana zero modes in quasi-1D systems.
We introduce a Hamiltonian coupling Majorana fermion degrees of freedom to a quantum dimer model. We argue that, in three dimensions, this model has deconfined quasiparticles supporting Majorana zero modes obeying nontrivial statistics. We introduce two effective field theory descriptions of this deconfined phase, in which the excitations have Coulomb interactions. A key feature of this system is the existence of topologically non-trivial fermionic excitations, called Hopfions because, in a suitable continuum limit of the dimer model, such excitations correspond to the Hopf map and are related to excitations identified in arXiv:1003.1964. We identify corresponding topological invariants of the quantum dimer model (with or without fermions) which are present even on lattices with trivial topology. The Hopfion energy gap depends upon the phase of the model. We briefly comment on the possibility of a phase with a gapped, deconfined $mathbb{Z}_2$ gauge field, as may arise on the stacked triangular lattice.
Galois conjugation relates unitary conformal field theories (CFTs) and topological quantum field theories (TQFTs) to their non-unitary counterparts. Here we investigate Galois conjugates of quantum double models, such as the Levin-Wen model. While these Galois conjugated Hamiltonians are typically non-Hermitian, we find that their ground state wave functions still obey a generalized version of the usual code property (local operators do not act on the ground state manifold) and hence enjoy a generalized topological protection. The key question addressed in this paper is whether such non-unitary topological phases can also appear as the ground states of Hermitian Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with these ground states lead to a loss of the code property and topological protection of the degenerate ground states. Beyond this we rigorously prove that no local change of basis can transform the ground states of the Galois conjugated doubled Fibonacci theory into the ground states of a topological model whose Hermitian Hamiltonian satisfies Lieb-Robinson bounds. These include all gapped local or quasi-local Hamiltonians. A similar statement holds for many other non-unitary TQFTs. One consequence is that the Gaffnian wave function cannot be the ground state of a gapped fractional quantum Hall state.
In a recent paper, Teo and Kane proposed a 3D model in which the defects support Majorana fermion zero modes. They argued that exchanging and twisting these defects would implement a set R of unitary transformations on the zero mode Hilbert space which is a ghostly recollection of the action of the braid group on Ising anyons in 2D. In this paper, we find the group T_{2n} which governs the statistics of these defects by analyzing the topology of the space K_{2n} of configurations of 2n defects in a slowly spatially-varying gapped free fermion Hamiltonian: T_{2n}equiv {pi_1}(K_{2n})$. We find that the group T_{2n}= Z times T^r_{2n}, where the ribbon permutation group T^r_{2n} is a mild enhancement of the permutation group S_{2n}: T^r_{2n} equiv Z_2 times E((Z_2)^{2n}rtimes S_{2n}). Here, E((Z_2)^{2n}rtimes S_{2n}) is the even part of (Z_2)^{2n} rtimes S_{2n}, namely those elements for which the total parity of the element in (Z_2)^{2n} added to the parity of the permutation is even. Surprisingly, R is only a projective representation of T_{2n}, a possibility proposed by Wilczek. Thus, Teo and Kanes defects realize `Projective Ribbon Permutation Statistics, which we show to be consistent with locality. We extend this phenomenon to other dimensions, co-dimensions, and symmetry classes. Since it is an essential input for our calculation, we review the topological classification of gapped free fermion systems and its relation to Bott periodicity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا