No Arabic abstract
Galois conjugation relates unitary conformal field theories (CFTs) and topological quantum field theories (TQFTs) to their non-unitary counterparts. Here we investigate Galois conjugates of quantum double models, such as the Levin-Wen model. While these Galois conjugated Hamiltonians are typically non-Hermitian, we find that their ground state wave functions still obey a generalized version of the usual code property (local operators do not act on the ground state manifold) and hence enjoy a generalized topological protection. The key question addressed in this paper is whether such non-unitary topological phases can also appear as the ground states of Hermitian Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with these ground states lead to a loss of the code property and topological protection of the degenerate ground states. Beyond this we rigorously prove that no local change of basis can transform the ground states of the Galois conjugated doubled Fibonacci theory into the ground states of a topological model whose Hermitian Hamiltonian satisfies Lieb-Robinson bounds. These include all gapped local or quasi-local Hamiltonians. A similar statement holds for many other non-unitary TQFTs. One consequence is that the Gaffnian wave function cannot be the ground state of a gapped fractional quantum Hall state.
We revisit a class of non-Hermitian topological models that are Galois conjugates of their Hermitian counter parts. Particularly, these are Galois conjugates of unitary string-net models. We demonstrate these models necessarily have real spectra, and that topological numbers are recovered as matrix elements of operators evaluated in appropriate bi-orthogonal basis, that we conveniently reformulate as a concomitant Hilbert space here. We also compute in the bi-orthogonal basis thetopological entanglement entropy, demonstrating that its real part is related to the quantum dimension of the topological order. While we focus mostly on the Yang-Lee model, the results in the paper apply generally to Galois conjugates.
We propose a new theory to characterize equilibrium topological phase with non-equilibrium quantum dynamics by introducing the concept of high-order topological charges, with novel phenomena being predicted. Through a dimension reduction approach, we can characterize a $d$-dimensional ($d$D) integer-invariant topological phase with lower-dimensional topological number quantified by high-order topological charges, of which the $s$th-order topological charges denote the monopoles confined on the $(s-1)$th-order band inversion surfaces (BISs) that are $(d-s+1)$D momentum subspaces. The bulk topology is determined by the $s$th order topological charges enclosed by the $s$th-order BISs. By quenching the system from trivial phase to topological regime, we show that the bulk topology of post-quench Hamiltonian can be detected through a high-order dynamical bulk-surface correspondence, in which both the high-order topological charges and high-order BISs are identified from quench dynamics. This characterization theory has essential advantages in two aspects. First, the highest ($d$th) order topological charges are characterized by only discrete signs of spin-polarization in zero dimension (i.e. the $0$th Chern numbers), whose measurement is much easier than the $1$st-order topological charges that are characterized by the continuous charge-related spin texture in higher dimensional space. Secondly, a more striking result is that a first-order high integer-valued topological charge always reduces to multiple highest-order topological charges with unit charge value, and the latter can be readily detected in experiment. The two fundamental features greatly simplify the characterization and detection of the topological charges and also topological phases, which shall advance the experimental studies in the near future.
The fractional quantum Hall (FQH) effect illustrates the range of novel phenomena which can arise in a topologically ordered state in the presence of strong interactions. The possibility of realizing FQH-like phases in models with strong lattice effects has attracted intense interest as a more experimentally accessible venue for FQH phenomena which calls for more theoretical attention. Here we investigate the physical relevance of previously derived geometric conditions which quantify deviations from the Landau level physics of the FQHE. We conduct extensive numerical many-body simulations on several lattice models, obtaining new theoretical results in the process, and find remarkable correlation between these conditions and the many-body gap. These results indicate which physical factors are most relevant for the stability of FQH-like phases, a paradigm we refer to as the geometric stability hypothesis, and provide easily implementable guidelines for obtaining robust FQH-like phases in numerical or real-world experiments.
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demonstrate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the $mathbb{Z}_2$ fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.
In recent experiments, time-dependent periodic fields are used to create exotic topological phases of matter with potential applications ranging from quantum transport to quantum computing. These nonequilibrium states, at high driving frequencies, exhibit the quintessential robustness against local disorder similar to equilibrium topological phases. However, proving the existence of such topological phases in a general setting is an open problem. We propose a universal effective theory that leverages on modern free probability theory and ideas in random matrices to analytically predict the existence of the topological phase for finite driving frequencies and across a range of disorder. We find that, depending on the strength of disorder, such systems may be topological or trivial and that there is a transition between the two. In particular, the theory predicts the critical point for the transition between the two phases and provides the critical exponents. We corroborate our results by comparing them to exact diagonalizations for driven-disordered 1D Kitaev chain and 2D Bernevig-Hughes-Zhang models and find excellent agreement. This Letter may guide the experimental efforts for exploring topological phases.