Do you want to publish a course? Click here

Dark energy is often assumed to be composed by a single scalar field. The background cosmic expansion is not sufficient to determine whether this is true or not. We study multi-field scalar-tensor models with a general dark matter source and write the observable modified gravity parameters (effective gravitational constant and anisotropic stress) in the form of a ratio of polynomials in the Fourier wavenumber k of order 2N, where N is the number of scalar fields. By comparing these observables to real data it is in principle possible to determine the number of dark energy scalar fields coupled to gravity. We also show that there are no realistic non-trivial cases in which the order of the polynomials is reduced.
A recently proposed technique allows one to constrain both the background and perturbation cosmological parameters through the distribution function of supernova Ia apparent magnitudes. Here we extend this technique to alternative cosmological scenarios, in which the growth of structure does not follow the $Lambda$CDM prescription. We apply the method first to the supernova data provided by the JLA catalog combined with all the current independent redshift distortion data and with low-redshift cluster data from Chandra and show that although the supernovae alone are not very constraining, they help in reducing the confidence regions. Then we apply our method to future data from LSST and from a survey that approximates the Euclid satellite mission. In this case we show that the combined data are nicely complementary and can constrain the normalization $sigma_8$ and the growth rate index $gamma$ to within $0.6%$ and $7%$, respectively. In particular, the LSST supernova catalog is forecast to give the constraint $gamma (sigma_8/0.83)^{6.7} = 0.55 pm 0.1$. We also report on constraints relative to a step-wise parametrization of the growth rate of structures. These results show that supernova lensing serves as a good cross-check on the measurement of perturbation parameters from more standard techniques.
119 - Luca Amendola 2014
The number of Italian firms in function of the number of workers is well approximated by an inverse power law up to 15 workers but shows a clear downward deflection beyond this point, both when using old pre-1999 data and when using recent (2014) data. This phenomenon could be associated with employent protection legislation which applies to companies with more than 15 workers (the Statuto dei Lavoratori). The deflection disappears for agriculture firms, for which the protection legislation applies already above 5 workers. In this note it is estimated that a correction of this deflection could bring an increase from 3.9 to 5.8% in new jobs in firms with a workforce between 5 to 25 workers.
Modified gravity theories predict in general a non standard equation for the propagation of gravitational waves. Here we discuss the impact of modified friction and speed of tensor modes on cosmic microwave polarization B modes. We show that the non standard friction term, parametrized by $alpha_{M}$, is degenerate with the tensor-to-scalar ratio $r$, so that small values of $r$ can be compensated by negative constant values of $alpha_M$. We quantify this degeneracy and its dependence on the epoch at which $alpha_{M}$ is different from the standard, zero, value and on the speed of gravitational waves $c_{T}$. In the particular case of scalar-tensor theories, $alpha_{M}$ is constant and strongly constrained by background and scalar perturbations, $0le alpha_{M}< 0.01$ and the degeneracy with $r$ is removed. In more general cases however such tight bounds are weakened and the B modes can provide useful constraints on early-time modified gravity.
We study models of quintessence consisting of a number of scalar fields coupled to several dark matter components. In the case of exponential potentials the scaling solutions can be described in terms of a single field. The corresponding effective logarithmic slope and effective coupling can be written in a simple form in terms of the individual slopes and couplings of the original fields. We also investigate solutions where the scalar potential is negligible, in particular those leading to transient matter dominated solutions. Finally, we compute the evolution equations for the linear perturbations which will allow these models to be tested against current and future observational data.
We explore the impact of modified gravity on B-modes, identifying two main separate effects: lensing and propagation of tensor modes. The location of the inflationary peak of the BB spectrum depends on the speed of gravitational waves; the amplitude of the lensing contribution depends on the anisotropic stress. We single out these effects using the quasi-static regime and considering models for which the background and the growth of matter perturbations are standard. Using available data we obtain that the gravitational wave speed is compatible with the speed of light and constrained to within about 10%.
We find the general conditions for viable cosmological solution at the background level in bigravity models. Furthermore, we constrain the parameters by comparing to the Union 2.1 supernovae catalog and identify, in some cases analytically, the best fit parameter or the degeneracy curve among pairs of parameters. We point out that a bimetric model with a single free parameter predicts a simple relation between the equation of state and the density parameter, fits well the supernovae data and is a valid and testable alternative to $Lambda$CDM. Additionally, we identify the conditions for a phantom behavior and show that viable bimetric cosmologies cannot cross the phantom divide.
115 - Luca Amendola 2013
The effective anisotropic stress or gravitational slip $eta=-Phi/Psi$ is a key variable in the characterisation of the physical origin of the dark energy, as it allows to test for a non-minimal coupling of the dark sector to gravity in the Jordan frame. It is however important to use a fully model-independent approach when measuring $eta$ to avoid introducing a theoretical bias into the results. In this paper we forecast the precision with which future large surveys can determine $eta$ in a way that only relies on directly observable quantities. In particular, we do not assume anything concerning the initial spectrum of perturbations, nor on its evolution outside the observed redshift range, nor on the galaxy bias. We first leave $eta$ free to vary in space and time and then we model it as suggested in Horndeski models of dark energy. Among our results, we find that a future large scale lensing and clustering survey can constrain $eta$ to within 10% if $k$-independent, and to within 60% or better at $k=0.1 h/$Mpc if it is restricted to follow the Horndeski model.
We present a new analysis on how to distinguish between isotropic and anisotropic cosmological models based on tracking the angular displacements of a large number of distant quasars over an extended period of time, and then performing a multipole-vector decomposition of the resulting displacement maps. We find that while the GAIA mission operating at its nominal specifications does not have sufficient angular resolution to resolve anisotropic universes from isotropic ones using this method within a reasonable timespan of ten years, a next-generation GAIA-like survey with a resolution ten times better should be equal to the task. Distinguishing between different anisotropic models is however more demanding. Keeping the observational timespan to ten years, we find that the angular resolution of the survey will need to be of order 0.1 micro-arcsecond in order for certain rotating anisotropic models to produce a detectable signature that is also unique to models of this class. However, should such a detection become possible, it would immediately allow us to rule out large local void models.
There is an approximately 9% discrepancy, corresponding to 2.4sigma, between two independent constraints on the expansion rate of the universe: one indirectly arising from the cosmic microwave background and baryon acoustic oscillations, and one more directly obtained from local measurements of the relation between redshifts and distances to sources. We argue that by taking into account the local gravitational potential at the position of the observer this tension - strengthened by the recent Planck results - is partially relieved and the concordance of the standard model of cosmology increased. We estimate that measurements of the local Hubble constant are subject to a cosmic variance of about 2.4% (limiting the local sample to redshifts z>0.010) or 1.3% (limiting it to z>0.023), a more significant correction than that taken into account already. Nonetheless, we show that one would need a very rare fluctuation to fully explain the offset in the Hubble rates. If this tension is further strengthened, a cosmology beyond the standard model may prove necessary.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا