No Arabic abstract
The number of Italian firms in function of the number of workers is well approximated by an inverse power law up to 15 workers but shows a clear downward deflection beyond this point, both when using old pre-1999 data and when using recent (2014) data. This phenomenon could be associated with employent protection legislation which applies to companies with more than 15 workers (the Statuto dei Lavoratori). The deflection disappears for agriculture firms, for which the protection legislation applies already above 5 workers. In this note it is estimated that a correction of this deflection could bring an increase from 3.9 to 5.8% in new jobs in firms with a workforce between 5 to 25 workers.
This paper outlines a critical gap in the assessment methodology used to estimate the macroeconomic costs and benefits of climate policy. It shows that the vast majority of models used for assessing climate policy use assumptions about the financial system that sit at odds with the observed reality. In particular, the models assumptions lead to `crowding out of capital, which cause them to show negative impacts from climate policy in virtually all cases. We compare this approach with that of the E3ME model, which follows non-equilibrium economic theory and adopts a more empirical approach. While the non-equilibrium model also has limitations, its treatment of the financial system is more consistent with reality and it shows that green investment need not crowd out investment in other parts of the economy -- and may therefore offer an economic stimulus. The implication of this finding is that standard CGE models consistently over-estimate the costs of climate policy in terms of GDP and welfare, potentially by a substantial amount. These findings overly restrict the range of possible emission pathways accessible using climate policy from the viewpoint of the decision-maker, and may also lead to misleading information used for policy making. Improvements in both modelling approaches should be sought with some urgency -- both to provide a better assessment of potential climate policy and to improve understanding of the dynamics of the global financial system more generally.
Inside the EU, the commercial integration of the CEE countries has gained remarkable momentum before the crisis appearance, but it has slightly slowed down afterwards. Consequently, the interest in identifying the factors supporting the commercial integration process is high. Recent findings in the new trade theory suggest that FDI influence the trade intensity but the studies approaching this relationship for the CEE countries present mixed evidence, and investigate the commercial integration of CEE countries with the old EU members. Against this background, the purpose of this paper is to assess the CEE countries intra-integration, focusing on the Czech Republic, Hungary, Poland and the Slovak Republic. For each country we employ a panel gravitational model for the bilateral trade and FDI, considering its interactions with the other three countries in the sample on the one hand, and with the three EU main commercial partners on the other hand. We investigate different facets of the trade -- FDI nexus, resorting to a fixed effects model, a random effects model, as well as to an instrumental variable estimator, over the period 2000-2013. Our results suggest that outward FDI sustains the CEE countries commercial integration, while inward FDI has no significant effect. In all the cases a complementarity effect between trade and FDI is documented, which is stronger for the CEE countries historical trade partners. Consequently, these findings show that CEE countries policymakers are interested in encouraging the outward FDI toward their neighbour countries in order to increase the commercial integration.
In this paper, we formulate a method for minimising the expectation value of the procurement cost of electricity in two popular spot markets: {it day-ahead} and {it intra-day}, under the assumption that expectation value of unit prices and the distributions of prediction errors for the electricity demand traded in two markets are known. The expectation value of the total electricity cost is minimised over two parameters that change the amounts of electricity. Two parameters depend only on the expected unit prices of electricity and the distributions of prediction errors for the electricity demand traded in two markets. That is, even if we do not know the predictions for the electricity demand, we can determine the values of two parameters that minimise the expectation value of the procurement cost of electricity in two popular spot markets. We demonstrate numerically that the estimate of two parameters often results in a small variance of the total electricity cost, and illustrate the usefulness of the proposed procurement method through the analysis of actual data.
The paper models foreign capital inflow from the developed to the developing countries in a stochastic dynamic programming (SDP) framework. Under some regularity conditions, the existence of the solutions to the SDP problem is proved and they are then obtained by numerical technique because of the non-linearity of the related functions. A number of comparative dynamic analyses explore the impact of parameters of the model on dynamic paths of capital inflow, interest rate in the international loan market and the exchange rate.
In this paper we address the question of the size distribution of firms. To this aim, we use the Bloomberg database comprising multinational firms within the years 1995-2003, and analyze the data of the sales and the total assets of the separate financial statement of the Japanese and the US companies, and make a comparison of the size distributions between the Japanese companies and the US companies. We find that (i) the size distribution of the US firms is approximately log-normal, in agreement with Gibrats observation (Gibrat 1931), and in contrast (ii) the size distribution of the Japanese firms is clearly not log-normal, and the upper tail of the size distribution follows the Pareto law. It agree with the predictions of the Simon model (Simon 1955). Key words: the size distribution of firms, the Gibrats law, and the Pareto law