Do you want to publish a course? Click here

We provide detailed local descriptions of stable polynomials in terms of their homogeneous decompositions, Puiseux expansions, and transfer function realizations. We use this theory to first prove that bounded rational functions on the polydisk possess non-tangential limits at every boundary point. We relate higher non-tangential regularity and distinguished boundary behavior of bounded rational functions to geometric properties of the zero sets of stable polynomials via our local descriptions. For a fixed stable polynomial $p$, we analyze the ideal of numerators $q$ such that $q/p$ is bounded on the bi-upper half plane. We completely characterize this ideal in several geometrically interesting situations including smooth points, double points, and ordinary multiple points of $p$. Finally, we analyze integrability properties of bounded rational functions and their derivatives on the bidisk.
158 - Kelly Bickel , Joseph A. Cima , 2021
We analyze the fine structure of Clark measures and Clark isometries associated with two-variable rational inner functions on the bidisk. In the degree (n,1) case, we give a complete description of supports and weights for both generic and exceptional Clark measures, characterize when the associated embedding operators are unitary, and give a formula for those embedding operators. We also highlight connections between our results and both the structure of Agler decompositions and study of extreme points for the set of positive pluriharmonic measures on 2-torus.
In this paper, we establish several results related to Crouzeixs conjecture. We show that the conjecture holds for contractions with eigenvalues that are sufficiently well-separated. This separation is measured by the so-called separation constant, which is defined in terms of the pseudohyperbolic metric. Moreover, we study general properties of related extremal functions and associated vectors. Throughout, compressions of the shift serve as illustrating examples which also allow for refined results.
The numerical range of a bounded, linear operator on a Hilbert space is a set in $mathbb{C}$ that encodes important information about the operator. In this survey paper, we first consider numerical ranges of matrices and discuss several connections with envelopes of families of curves. We then turn to the shift operator, perhaps the most important operator on the Hardy space $H^2(mathbb{D})$, and compressions of the shift operator to model spaces, i.e.~spaces of the form $H^2 ominus theta H^2$ where $theta$ is inner. For these compressions of the shift operator, we provide a survey of results on the connection between their numerical ranges and the numerical ranges of their unitary dilations. We also discuss related results for compressed shift operators on the bidisk associated to rational inner functions and conclude the paper with a brief discussion of the Crouzeix conjecture.
68 - Kelly Bickel , Pamela Gorkin , 2018
Intuitively, an envelope of a family of curves is a curve that is tangent to a member of the family at each point. Here we use envelopes of families of circles to study objects from matrix theory and hyperbolic geometry. First we explore relationships between numerical ranges of $2times 2$ matrices and families of circles to study the elliptical range theorem. Then we deduce a relationship between envelopes and the boundaries of families of intersecting circles and use it to find the boundaries of various families of pseudohyperbolic disks.
We consider two-variable model spaces associated to rational inner functions $Theta$ on the bidisk, which always possess canonical $z_2$-invariant subspaces $mathcal{S}_2.$ A particularly interesting compression of the shift is the compression of multiplication by $z_1$ to $mathcal{S}_2$, namely $ S^1_{Theta}:= P_{mathcal{S}_2} M_{z_1} |_{mathcal{S}_2}$. We show that these compressed shifts are unitarily equivalent to matrix-valued Toeplitz operators with well-behaved symbols and characterize their numerical ranges and radii. We later specialize to particularly simple rational inner functions and study the geometry of the associated numerical ranges, find formulas for the boundaries, answer the zero inclusion question, and determine whether the numerical ranges are ever circular.
Let $W$ denote a matrix $A_2$ weight. In this paper, we implement a scalar argument using the square function to deduce square-function type results for vector-valued functions in $L^2(mathbb{R},mathbb{C}^d)$. These results are then used to study the boundedness of the Hilbert transform and Haar multipliers on $L^2(mathbb{R},mathbb{C}^d)$. Our proof shortens the original argument by Treil and Volberg and improves the dependence on the $A_2$ characteristic. In particular, we prove that the Hilbert transform and Haar multipliers map $L^2(mathbb{R},W,mathbb{C}^d)$ to itself with dependence on on the $A_2$ characteristic at most $[W]_{A_2}^{frac{3}{2}} log [W]_{A_2}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا