Do you want to publish a course? Click here

137 - Zeyang Liu , Ke Zhou , Jiaxin Mao 2021
Conversational search systems, such as Google Assistant and Microsoft Cortana, provide a new search paradigm where users are allowed, via natural language dialogues, to communicate with search systems. Evaluating such systems is very challenging since search results are presented in the format of natural language sentences. Given the unlimited number of possible responses, collecting relevance assessments for all the possible responses is infeasible. In this paper, we propose POSSCORE, a simple yet effective automatic evaluation method for conversational search. The proposed embedding-based metric takes the influence of part of speech (POS) of the terms in the response into account. To the best knowledge, our work is the first to systematically demonstrate the importance of incorporating syntactic information, such as POS labels, for conversational search evaluation. Experimental results demonstrate that our metrics can correlate with human preference, achieving significant improvements over state-of-the-art baseline metrics.
78 - Sanjay Reddy , Dake Zhou 2021
We find that sub-GeV neutrino portal bosons that carry lepton number can condense inside a proto-neutron star (newly born neutron star). These bosons are produced copiously and form a Bose-Einstein condensate for a range of as yet unconstrained coupling strengths to neutrinos. The condensate is a lepton number superfluid with transport properties that differ dramatically from those encountered in ordinary dense baryonic matter. We discuss how this phase could alter the evolution of proto-neutron stars and comment on the implications for neutrino signals and nucleosynthesis.
Scoring functions, which measure the plausibility of triples, have become the crux of knowledge graph embedding (KGE). Plenty of scoring functions, targeting at capturing different kinds of relations in KGs, have been designed by experts in recent years. However, as relations can exhibit intricate patterns that are hard to infer before training, none of them can consistently perform the best on existing benchmark tasks. AutoSF has shown the significance of using automated machine learning (AutoML) to design KG- dependent scoring functions. In this paper, we propose AutoSF+ as an extension of AutoSF. First, we improve the search algorithm with the evolutionary search, which can better explore the search space. Second, we evaluate AutoSF+ on the recently developed benchmark OGB. Besides, we apply AutoSF+ to the new task, i.e., entity classification, to show that it can improve the task beyond KG completion.
74 - Yuan Tian , Ke Zhou , Dan Pelleg 2021
User engagement is crucial to the long-term success of a mobile app. Several metrics, such as dwell time, have been used for measuring user engagement. However, how to effectively predict user engagement in the context of mobile apps is still an open research question. For example, do the mobile usage contexts (e.g.,~time of day) in which users access mobile apps impact their dwell time? Answers to such questions could help mobile operating system and publishers to optimize advertising and service placement. In this paper, we first conduct an empirical study for assessing how user characteristics, temporal features, and the short/long-term contexts contribute to gains in predicting users app dwell time on the population level. The comprehensive analysis is conducted on large app usage logs collected through a mobile advertising company. The dataset covers more than 12K anonymous users and 1.3 million log events. Based on the analysis, we further investigate a novel mobile app engagement prediction problem -- can we predict simultaneously what app the user will use next and how long he/she will stay on that app? We propose several strategies for this joint prediction problem and demonstrate that our model can improve the performance significantly when compared with the state-of-the-art baselines. Our work can help mobile system developers in designing a better and more engagement-aware mobile app user experience.
Conversational search systems, such as Google Assistant and Microsoft Cortana, enable users to interact with search systems in multiple rounds through natural language dialogues. Evaluating such systems is very challenging given that any natural language responses could be generated, and users commonly interact for multiple semantically coherent rounds to accomplish a search task. Although prior studies proposed many evaluation metrics, the extent of how those measures effectively capture user preference remains to be investigated. In this paper, we systematically meta-evaluate a variety of conversational search metrics. We specifically study three perspectives on those metrics: (1) reliability: the ability to detect actual performance differences as opposed to those observed by chance; (2) fidelity: the ability to agree with ultimate user preference; and (3) intuitiveness: the ability to capture any property deemed important: adequacy, informativeness, and fluency in the context of conversational search. By conducting experiments on two test collections, we find that the performance of different metrics varies significantly across different scenarios whereas consistent with prior studies, existing metrics only achieve a weak correlation with ultimate user preference and satisfaction. METEOR is, comparatively speaking, the best existing single-turn metric considering all three perspectives. We also demonstrate that adapted session-based evaluation metrics can be used to measure multi-turn conversational search, achieving moderate concordance with user satisfaction. To our knowledge, our work establishes the most comprehensive meta-evaluation for conversational search to date.
Since the uptake of social media, researchers have mined online discussions to track the outbreak and evolution of specific diseases or chronic conditions such as influenza or depression. To broaden the set of diseases under study, we developed a Deep Learning tool for Natural Language Processing that extracts mentions of virtually any medical condition or disease from unstructured social media text. With that tool at hand, we processed Reddit and Twitter posts, analyzed the clusters of the two resulting co-occurrence networks of conditions, and discovered that they correspond to well-defined categories of medical conditions. This resulted in the creation of the first comprehensive taxonomy of medical conditions automatically derived from online discussions. We validated the structure of our taxonomy against the official International Statistical Classification of Diseases and Related Health Problems (ICD-11), finding matches of our clusters with 20 official categories, out of 22. Based on the mentions of our taxonomys sub-categories on Reddit posts geo-referenced in the U.S., we were then able to compute disease-specific health scores. As opposed to counts of disease mentions or counts with no knowledge of our taxonomys structure, we found that our disease-specific health scores are causally linked with the officially reported prevalence of 18 conditions.
Disruptions resulting from an epidemic might often appear to amount to chaos but, in reality, can be understood in a systematic way through the lens of epidemic psychology. According to Philip Strong, the founder of the sociological study of epidemic infectious diseases, not only is an epidemic biological; there is also the potential for three psycho-social epidemics: of fear, moralization, and action. This work empirically tests Strongs model at scale by studying the use of language of 122M tweets related to the COVID-19 pandemic posted in the U.S. during the whole year of 2020. On Twitter, we identified three distinct phases. Each of them is characterized by different regimes of the three psycho-social epidemics. In the refusal phase, users refused to accept reality despite the increasing number of deaths in other countries. In the anger phase (started after the announcement of the first death in the country), users fear translated into anger about the looming feeling that things were about to change. Finally, in the acceptance phase, which began after the authorities imposed physical-distancing measures, users settled into a new normal for their daily activities. Overall, refusal of accepting reality gradually died off as the year went on, while acceptance increasingly took hold. During 2020, as cases surged in waves, so did anger, re-emerging cyclically at each wave. Our real-time operationalization of Strongs model is designed in a way that makes it possible to embed epidemic psychology into real-time models (e.g., epidemiological and mobility models).
LE is the low energy telescope of Insight-HXMT. It uses swept charge devices (SCDs) to detect soft X-ray photons. The time response of LE is caused by the structure of SCDs. With theoretical analysis and Monte Carlo simulations we discuss the influence of LE time response (LTR) on the timing analysis from three aspects: the power spectral density, the pulse profile and the time lag. After the LTR, the value of power spectral density monotonously decreases with the increasing frequency. The power spectral density of a sinusoidal signal reduces by a half at frequency 536 Hz. The corresponding frequency for QPO signals is 458 Hz. The Root mean square (RMS) of QPOs holds the similar behaviour. After the LTR, the centroid frequency and full width at half maxima (FWHM) of QPOs signals do not change. The LTR reduces the RMS of pulse profiles and shifts the pulse phase. In the time domain, the LTR only reduces the peak value of the crosscorrelation function while it does not change the peak position. Thus it will not affect the result of the time lag. When considering the time lag obtained from two instruments and one among them is LE, a 1.18 ms lag is expected caused by the LTR. The time lag calculated in the frequency domain is the same as that in the time domain.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا