No Arabic abstract
Conversational search systems, such as Google Assistant and Microsoft Cortana, provide a new search paradigm where users are allowed, via natural language dialogues, to communicate with search systems. Evaluating such systems is very challenging since search results are presented in the format of natural language sentences. Given the unlimited number of possible responses, collecting relevance assessments for all the possible responses is infeasible. In this paper, we propose POSSCORE, a simple yet effective automatic evaluation method for conversational search. The proposed embedding-based metric takes the influence of part of speech (POS) of the terms in the response into account. To the best knowledge, our work is the first to systematically demonstrate the importance of incorporating syntactic information, such as POS labels, for conversational search evaluation. Experimental results demonstrate that our metrics can correlate with human preference, achieving significant improvements over state-of-the-art baseline metrics.
Conversational search systems, such as Google Assistant and Microsoft Cortana, enable users to interact with search systems in multiple rounds through natural language dialogues. Evaluating such systems is very challenging given that any natural language responses could be generated, and users commonly interact for multiple semantically coherent rounds to accomplish a search task. Although prior studies proposed many evaluation metrics, the extent of how those measures effectively capture user preference remains to be investigated. In this paper, we systematically meta-evaluate a variety of conversational search metrics. We specifically study three perspectives on those metrics: (1) reliability: the ability to detect actual performance differences as opposed to those observed by chance; (2) fidelity: the ability to agree with ultimate user preference; and (3) intuitiveness: the ability to capture any property deemed important: adequacy, informativeness, and fluency in the context of conversational search. By conducting experiments on two test collections, we find that the performance of different metrics varies significantly across different scenarios whereas consistent with prior studies, existing metrics only achieve a weak correlation with ultimate user preference and satisfaction. METEOR is, comparatively speaking, the best existing single-turn metric considering all three perspectives. We also demonstrate that adapted session-based evaluation metrics can be used to measure multi-turn conversational search, achieving moderate concordance with user satisfaction. To our knowledge, our work establishes the most comprehensive meta-evaluation for conversational search to date.
How data is represented and operationalized is critical for building computational solutions that are both effective and efficient. A common approach is to represent data objects as binary vectors, denoted textit{hash codes}, which require little storage and enable efficient similarity search through direct indexing into a hash table or through similarity computations in an appropriate space. Due to the limited expressibility of hash codes, compared to real-valued representations, a core open challenge is how to generate hash codes that well capture semantic content or latent properties using a small number of bits, while ensuring that the hash codes are distributed in a way that does not reduce their search efficiency. State of the art methods use representation learning for generating such hash codes, focusing on neural autoencoder architectures where semantics are encoded into the hash codes by learning to reconstruct the original inputs of the hash codes. This thesis addresses the above challenge and makes a number of contributions to representation learning that (i) improve effectiveness of hash codes through more expressive representations and a more effective similarity measure than the current state of the art, namely the Hamming distance, and (ii) improve efficiency of hash codes by learning representations that are especially suited to the choice of search method. The contributions are empirically validated on several tasks related to similarity search and recommendation.
In this paper, we address the problem of answering complex information needs by conversing conversations with search engines, in the sense that users can express their queries in natural language, and directly receivethe information they need from a short system response in a conversational manner. Recently, there have been some attempts towards a similar goal, e.g., studies on Conversational Agents (CAs) and Conversational Search (CS). However, they either do not address complex information needs, or they are limited to the development of conceptual frameworks and/or laboratory-based user studies. We pursue two goals in this paper: (1) the creation of a suitable dataset, the Search as a Conversation (SaaC) dataset, for the development of pipelines for conversations with search engines, and (2) the development of astate-of-the-art pipeline for conversations with search engines, the Conversations with Search Engines (CaSE), using this dataset. SaaC is built based on a multi-turn conversational search dataset, where we further employ workers from a crowdsourcing platform to summarize each relevant passage into a short, conversational response. CaSE enhances the state-of-the-art by introducing a supporting token identification module and aprior-aware pointer generator, which enables us to generate more accurate responses. We carry out experiments to show that CaSE is able to outperform strong baselines. We also conduct extensive analyses on the SaaC dataset to show where there is room for further improvement beyond CaSE. Finally, we release the SaaC dataset and the code for CaSE and all models used for comparison to facilitate future research on this topic.
Recently, conversational recommender system (CRS) has become an emerging and practical research topic. Most of the existing CRS methods focus on learning effective preference representations for users from conversation data alone. While, we take a new perspective to leverage historical interaction data for improving CRS. For this purpose, we propose a novel pre-training approach to integrating both item-based preference sequence (from historical interaction data) and attribute-based preference sequence (from conversation data) via pre-training methods. We carefully design two pre-training tasks to enhance information fusion between item- and attribute-based preference. To improve the learning performance, we further develop an effective negative sample generator which can produce high-quality negative samples. Experiment results on two real-world datasets have demonstrated the effectiveness of our approach for improving CRS.
Sponsored search represents a major source of revenue for web search engines. This popular advertising model brings a unique possibility for advertisers to target users immediate intent communicated through a search query, usually by displaying their ads alongside organic search results for queries deemed relevant to their products or services. However, due to a large number of unique queries it is challenging for advertisers to identify all such relevant queries. For this reason search engines often provide a service of advanced matching, which automatically finds additional relevant queries for advertisers to bid on. We present a novel advanced matching approach based on the idea of semantic embeddings of queries and ads. The embeddings were learned using a large data set of user search sessions, consisting of search queries, clicked ads and search links, while utilizing contextual information such as dwell time and skipped ads. To address the large-scale nature of our problem, both in terms of data and vocabulary size, we propose a novel distributed algorithm for training of the embeddings. Finally, we present an approach for overcoming a cold-start problem associated with new ads and queries. We report results of editorial evaluation and online tests on actual search traffic. The results show that our approach significantly outperforms baselines in terms of relevance, coverage, and incremental revenue. Lastly, we open-source learned query embeddings to be used by researchers in computational advertising and related fields.