Do you want to publish a course? Click here

$mathbb{Q}_0$ - the involutive meadow of the rational numbers - is the field of the rational numbers where the multiplicative inverse operation is made total by imposing $0^{-1}=0$. In this note, we prove that $mathbb{Q}_0$ cannot be specified by the usual axioms for meadows augmented by a finite set of axioms of the form $(1+ cdots +1+x^2)cdot (1+ cdots +1 +x^2)^{-1}=1$.
Poly-infix operators and operator families are introduced as an alternative for working modulo associativity and the corresponding bracket deletion convention. Poly-infix operators represent the basic intuition of repetitively connecting an ordered sequence of entities with the same connecting primitive.
Proposition algebra is based on Hoares conditional connective, which is a ternary connective comparable to if-then-else and used in the setting of propositional logic. Conditional statements are provided with a simple semantics that is based on evaluation trees and that characterizes so-called free valuation congruence: two conditional statements are free valuation congruent if, and only if, they have equal evaluation trees. Free valuation congruence is axiomatized by the four basic equational axioms of proposition algebra that define the conditional connective. Valuation congruences that identify more conditional statements than free valuation congruence are repetition-proof, contractive, memorizing, and static valuation congruence. Each of these valuation congruences is characterized using a transformation on evaluation trees: two conditional statements are C-valuation congruent if, and only if, their C-transformed evaluation trees are equal. These transformations are simple and natural, and only for static valuation congruence a slightly more complex transformation is used. Also, each of these valuation congruences is axiomatized in proposition algebra. A spin-off of our approach can be called normalization functions for proposition algebra: for each valuation congruence C considered, two conditional statements are C-valuation congruent if, and only if, the C-normalization function returns equal images.
In the well-known construction of the field of fractions of an integral domain, division by zero is excluded. We introduce fracpairs as pairs subject to laws consistent with the use of the pair as a fraction, but do not exclude denominators to be zero. We investigate fracpairs over a reduced commutative ring (a commutative ring that has no nonzero nilpotent elements) and provide these with natural definitions for addition, multiplication, and additive and multiplicative inverse. We find that modulo a simple congruence these fracpairs constitute a common meadow, which is a commutative monoid both for addition and multiplication, extended with a weak additive inverse, a multiplicative inverse except for zero, and an additional element a that is the image of the multiplicative inverse on zero and that propagates through all operations. Considering a as an error-value supports the intuition. The equivalence classes of fracpairs thus obtained are called common cancellation fractions (cc-fractions), and cc-fractions over the integers constitute a homomorphic pre-image of the common meadow Qa, the field Q of rational numbers expanded with an a-totalized inverse. Moreover, the initial common meadow is isomorphic to the initial algebra of cc-fractions over the integer numbers. Next, we define canonical term algebras for cc-fractions over the integers and some meadows that model the rational numbers expanded with a totalized inverse, and provide some negative results concerning their associated term rewriting properties. Then we consider reduced commutative rings in which the sum of two squares plus one cannot be a zero divisor: by extending the equivalence relation on fracpairs we obtain an initial algebra that is isomorphic to Qa. Finally, we express negative conjectures concerning alternative specifications for these (concrete) datatypes.
Common meadows are fields expanded with a total inverse function. Division by zero produces an additional value denoted with a that propagates through all operations of the meadow signature (this additional value can be interpreted as an error element). We provide a basis theorem for so-called common cancellation meadows of characteristic zero, that is, common meadows of characteristic zero that admit a certain cancellation law.
We discuss for the concept of promises within a framework that can be applied to either humans or technology. We compare promises to the more established notion of obligations and find promises to be both simpler and more effective at reducing uncertainty in behavioural outcomes.
We consider the signatures $Sigma_m=(0,1,-,+, cdot, ^{-1})$ of meadows and $(Sigma_m, {mathbf s})$ of signed meadows. We give two complete axiomatizations of the equational theories of the real numbers with respect to these signatures. In the first case, we extend the axiomatization of zero-totalized fields by a single axiom scheme expressing formal realness; the second axiomatization presupposes an ordering. We apply these completeness results in order to obtain complete axiomatizations of the complex numbers.
The Kolmogorov axioms for probability functions are placed in the context of signed meadows. A completeness theorem is stated and proven for the resulting equational theory of probability calculus. Elementary definitions of probability theory are restated in this framework.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا