Do you want to publish a course? Click here

A static theory of promises

255   0   0.0 ( 0 )
 Added by Jan Bergstra
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

We discuss for the concept of promises within a framework that can be applied to either humans or technology. We compare promises to the more established notion of obligations and find promises to be both simpler and more effective at reducing uncertainty in behavioural outcomes.



rate research

Read More

Android is present in more than 85% of mobile devices, making it a prime target for malware. Malicious code is becoming increasingly sophisticated and relies on logic bombs to hide itself from dynamic analysis. In this paper, we perform a large scale study of TSOPEN, our open-source implementation of the state-of-the-art static logic bomb scanner TRIGGERSCOPE, on more than 500k Android applications. Results indicate that the approach scales. Moreover, we investigate the discrepancies and show that the approach can reach a very low false-positive rate, 0.3%, but at a particular cost, e.g., removing 90% of sensitive methods. Therefore, it might not be realistic to rely on such an approach to automatically detect all logic bombs in large datasets. However, it could be used to speed up the location of malicious code, for instance, while reverse engineering applications. We also present TRIGDB a database of 68 Android applications containing trigger-based behavior as a ground-truth to the research community.
Unobserved confounding presents a major threat to the validity of causal inference from observational studies. In this paper, we introduce a novel framework that leverages the information in multiple parallel outcomes for identification and estimation of causal effects. Under a conditional independence structure among multiple parallel outcomes, we achieve nonparametric identification with at least three parallel outcomes. We further show that under a set of linear structural equation models, causal inference is possible with two parallel outcomes. We develop accompanying estimating procedures and evaluate their finite sample performance through simulation studies and a data application studying the causal effect of the tau protein level on various types of behavioral deficits.
Mobile application security has been one of the major areas of security research in the last decade. Numerous application analysis tools have been proposed in response to malicious, curious, or vulnerable apps. However, existing tools, and specifically, static analysis tools, trade soundness of the analysis for precision and performance, and are hence soundy. Unfortunately, the specific unsound choices or flaws in the design of these tools are often not known or well-documented, leading to a misplaced confidence among researchers, developers, and users. This paper proposes the Mutation-based soundness evaluation ($mu$SE) framework, which systematically evaluates Android static analysis tools to discover, document, and fix, flaws, by leveraging the well-founded practice of mutation analysis. We implement $mu$SE as a semi-automated framework, and apply it to a set of prominent Android static analysis tools that detect private data leaks in apps. As the result of an in-depth analysis of one of the major tools, we discover 13 undocumented flaws. More importantly, we discover that all 13 flaws propagate to tools that inherit the flawed tool. We successfully fix one of the flaws in cooperation with the tool developers. Our results motivate the urgent need for systematic discovery and documentation of unsound choices in soundy tools, and demonstrate the opportunities in leveraging mutation testing in achieving this goal.
There is an ongoing debate in computer science how algorithms should best be studied. Some scholars have argued that experimental evaluations should be conducted, others emphasize the benefits of formal analysis. We believe that this debate less of a question of either-or, because both views can be integrated into an overarching framework. It is the ambition of this paper to develop such a framework of algorithm engineering with a theoretical foundation in the philosophy of science. We take the empirical nature of algorithm engineering as a starting point. Our theoretical framework builds on three areas discussed in the philosophy of science: ontology, epistemology and methodology. In essence, ontology describes algorithm engineering as being concerned with algorithmic problems, algorithmic tasks, algorithm designs and algorithm implementations. Epistemology describes the body of knowledge of algorithm engineering as a collection of prescriptive and descriptive knowledge, residing in World 3 of Poppers Three Worlds model. Methodology refers to the steps how we can systematically enhance our knowledge of specific algorithms. In this context, we identified seven validity concerns and discuss how researchers can respond to falsification. Our framework has important implications for researching algorithms in various areas of computer science.
90 - Davide Grossi 2021
These lecture notes have been developed for the course Computational Social Choice of the Artificial Intelligence MSc programme at the University of Groningen. They cover mathematical and algorithmic aspects of voting theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا