Do you want to publish a course? Click here

We determine analytically the phase diagram of the toric code model in a parallel magnetic field which displays three distinct regions. Our study relies on two high-order perturbative expansions in the strong- and weak-field limit, as well as a large-spin analysis. Calculations in the topological phase establish a quasiparticle picture for the anyonic excitations. We obtain two second-order transition lines that merge with a first-order line giving rise to a multicritical point as recently suggested by numerical simulations. We compute the values of the corresponding critical fields and exponents that drive the closure of the gap. We also give the one-particle dispersions of the anyonic quasiparticles inside the topological phase.
104 - S. Dusuel , J. Vidal 2015
We propose a simple mean-field ansatz to study phase transitions from a topological phase to a trivial phase. We probe the efficiency of this approach by considering the string-net model in the presence of a string tension for any anyon theory. Such a perturbation is known to be responsible for a deconfinement-confinement phase transition which is well described by the present variational setup. We argue that mean-field results become exact in the limit of large total quantum dimension.
We study a string-net ladder in the presence of a string tension. Focusing on the simplest non-Abelian anyon theory with a quantum dimension larger than two, we determine the phase diagram and find a Russian doll spectrum featuring size-independent energy levels as well as highly degenerate zero-energy eigenstates. At the self-dual points, we compute the gap exactly by using a mapping onto the Temperley-Lieb chain. These results are in stark constrast with the ones obtained for Fibonacci or Ising theories.
78 - M. Kamfor , S. Dusuel , J. Vidal 2013
Dynamical correlation functions of the toric code in a uniform magnetic field are studied inside the topological phase, in the small-field limit. Such an experimentally measurable quantity displays rich field-dependent features that can be understood via the interplay of the kinetics and the interaction of the anyonic excitations. In particular, it is sensitive to the two-quasiparticle bound states that are present in the spectrum for a wide range of magnetic fields. Interestingly, such collective modes can even constitute the lowest-energy excitations of the system.
We study the finite-temperature behavior of the Lipkin-Meshkov-Glick model, with a focus on correlation properties as measured by the mutual information. The latter, which quantifies the amount of both classical and quantum correlations, is computed exactly in the two limiting cases of vanishing magnetic field and vanishing temperature. For all other situations, numerical results provide evidence of a finite mutual information at all temperatures except at criticality. There, it diverges as the logarithm of the system size, with a prefactor that can take only two values, depending on whether the critical temperature vanishes or not. Our work provides a simple example in which the mutual information appears as a powerful tool to detect finite-temperature phase transitions, contrary to entanglement measures such as the concurrence.
We analyze the effect of local spin operators in the Kitaev model on the honeycomb lattice. We show, in perturbation around the isolated-dimer limit, that they create Abelian anyons together with fermionic excitations which are likely to play a role in experiments. We derive the explicit form of the operators creating and moving Abelian anyons without creating fermions and show that it involves multi-spin operations. Finally, the important experimental constraints stemming from our results are discussed.
We point out some major technical and conceptual mistakes which invalidate the conclusion drawn in Anyonic braiding in optical lattices by C. Zhang, V. W. Scarola, S. Tewari, and S. Das Sarma published in PNAS 104, 18415 (2007).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا