Do you want to publish a course? Click here

Spectroscopy of a topological phase

99   0   0.0 ( 0 )
 Added by Julien Vidal
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dynamical correlation functions of the toric code in a uniform magnetic field are studied inside the topological phase, in the small-field limit. Such an experimentally measurable quantity displays rich field-dependent features that can be understood via the interplay of the kinetics and the interaction of the anyonic excitations. In particular, it is sensitive to the two-quasiparticle bound states that are present in the spectrum for a wide range of magnetic fields. Interestingly, such collective modes can even constitute the lowest-energy excitations of the system.



rate research

Read More

220 - M. D. Schulz , S. Dusuel , R. Orus 2011
We study the robustness of a generalized Kitaevs toric code with Z_N degrees of freedom in the presence of local perturbations. For N=2, this model reduces to the conventional toric code in a uniform magnetic field. A quantitative analysis is performed for the perturbed Z_3 toric code by applying a combination of high-order series expansions and variational techniques. We provide strong evidences for first- and second-order phase transitions between topologically-ordered and polarized phases. Most interestingly, our results also indicate the existence of topological multi-critical points in the phase diagram.
We investigate quantum transport and thermoelectrical properties of a finite-size Su-Schrieffer-Heeger model, a paradigmatic model for a one-dimensional topological insulator, which displays topologically protected edge states. By coupling the model to two fermionic reservoirs at its ends, we can explore the non-equilibrium dynamics of the system. Investigating the energy-resolved transmission, the current and the noise, we find that these observables can be used to detect the topologically non-trivial phase. With specific parameters and asymmetric reservoir coupling strengths, we show that we can dissipatively prepare the edge states as stationary states of a non-equilibrium configuration. In addition, we point out that the edge states can be exploited to design a refrigerator driven by chemical work or a heat engine driven by a thermal gradient, respectively. These thermal devices do not require asymmetric couplings and are topologically protected against symmetry-preserving perturbations. Their maximum efficiencies significantly exceed that of a single quantum dot device at comparable coupling strengths.
The competition between interactions and dissipative processes in a quantum many-body system can drive phase transitions of different order. Exploiting a combination of cluster methods and quantum trajectories, we show how the systematic inclusion of (classical and quantum) nonlocal correlations at increasing distances is crucial to determine the structure of the phase diagram, as well as the nature of the transitions in strongly interacting spin systems. In practice, we focus on the paradigmatic dissipative quantum Ising model: in contrast to the non-dissipative case, its phase diagram is still a matter of debate in the literature. When dissipation acts along the interaction direction, we predict important quantitative modifications of the position of the first-order transition boundary. In the case of incoherent relaxation in the field direction, our approach confirms the presence of a second-order transition, while does not support the possible existence of multicritical points. Potentially, these results can be tested in up-to date quantum simulators of Rydberg atoms.
We study the finite-temperature behavior of the Lipkin-Meshkov-Glick model, with a focus on correlation properties as measured by the mutual information. The latter, which quantifies the amount of both classical and quantum correlations, is computed exactly in the two limiting cases of vanishing magnetic field and vanishing temperature. For all other situations, numerical results provide evidence of a finite mutual information at all temperatures except at criticality. There, it diverges as the logarithm of the system size, with a prefactor that can take only two values, depending on whether the critical temperature vanishes or not. Our work provides a simple example in which the mutual information appears as a powerful tool to detect finite-temperature phase transitions, contrary to entanglement measures such as the concurrence.
We explore the possibility of dynamical quantum phase transitions (DQPTs) occurring during the temporal evolution of a quenched transverse field Ising chain coupled to a particle loss type of bath (local in Jordan-Wigner fermion space) using t
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا