Do you want to publish a course? Click here

Isolated quantum systems in extreme conditions can exhibit unusually large occupancies per mode. This over-population gives rise to new universality classes of many-body systems far from equilibrium. We present theoretical evidence that important aspects of non-Abelian plasmas in the ultra-relativistic limit admit a dual description in terms of a Bose condensed scalar field theory.
Different thermalization scenarios for systems with large fields have been proposed in the literature based on classical-statistical lattice simulations approximating the underlying quantum dynamics. We investigate the range of validity of these simulations for condensate driven as well as fluctuation dominated initial conditions for the example of a single component scalar field theory. We show that they lead to the same phenomenon of turbulent thermalization for the whole range of (weak) couplings where the classical-statistical approach is valid. In the turbulent regime we establish the existence of a dual cascade characterized by universal scaling exponents and scaling functions. This complements previous investigations where only the direct energy cascade has been studied for the single component theory. A proposed alternative thermalization scenario for stronger couplings is shown to be beyond the range of validity of classical-statistical simulations.
We study out-of-equilibrium dynamics of intense non-abelian gauge fields. Generalizing the well-known Nielsen-Olesen instabilities for constant initial color-magnetic fields, we investigate the impact of temporal modulations and fluctuations in the initial conditions. This leads to a remarkable coexistence of the original Nielsen-Olesen instability and the subdominant phenomenon of parametric resonance. Taking into account that the fields may be correlated only over a limited transverse size, we model characteristic aspects of the dynamics of color flux tubes relevant in the context of heavy-ion collisions.
Kolmogorov wave turbulence plays an important role for the thermalization process following plasma instabilities in nonabelian gauge theories. We show that classical-statistical simulations in SU(2) gauge theory indicate a Kolmogorov scaling exponent known from scalar models. In the range of validity of resummed perturbation theory this result is shown to agree with analytical estimates. We study the effect of classical-statistical versus quantum corrections and demonstrate that the latter lead to the absence of turbulence in the far ultraviolet.
We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitatively similar behavior as compared to earlier investigations in SU(2) gauge theory. The characteristic growth rates are about 25 % lower for given energy density, such that the isotropization process is slower. Measured in units of the characteristic screening mass, the primary growth rate is independent of the number of colors.
156 - J. Berges , G. Hoffmeister 2008
Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium.
105 - J. Berges 2008
Topical phenomena in high-energy physics related to collision experiments of heavy nuclei (Little Bang) and early universe cosmology (Big Bang) involve far-from-equilibrium dynamics described by quantum field theory. One example concerns the role of plasma instabilities for the process of thermalization in heavy-ion collisions. The reheating of the early universe after inflation may exhibit rather similar phenomena following a tachyonic or parametric resonance instability. Certain universal aspects associated to nonthermal fixed points even quantitatively agree, and considering these phenomena from a common perspective can be fruitful.
Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically generated weak coupling. We show this by investigating isolated systems described by relativistic quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric resonance or spinodal decomposition. The non-thermal fixed points prevent fast thermalization if classical-statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of these results for the heating of the early universe after inflation and the question of fast thermalization in heavy-ion collision experiments.
89 - J. Berges , D. Sexty 2008
We investigate simulations for gauge theories on a Minkowskian space-time lattice. We employ stochastic quantization with optimized updating using stochastic reweighting or gauge fixing, respectively. These procedures do not affect the underlying theory but strongly improve the stability properties of the stochastic dynamics, such that simulations on larger real-time lattices can be performed.
277 - J. Berges , S. Scheffler , 2008
We compute nonequilibrium dynamics for classical-statistical SU(2) pure gauge theory on a lattice. We consider anisotropic initial conditions with high occupation numbers in the transverse plane on a characteristic scale ~ Q_s. This is used to investigate the very early stages of the thermalization process in the context of heavy-ion collisions. We find Weibel or primary instabilities with growth rates similar to those obtained from previous treatments employing anisotropic distributions of hard modes (particles) in the weak coupling limit. We observe secondary growth rates for higher-momentum modes reaching substantially larger values and we analyse them in terms of resummed loop diagrams beyond the hard-loop approximation. We find that a coarse grained pressure isotropizes bottom-up with a characteristic inverse rate of gamma^{-1} ~ 1 - 2 fm/c for coarse graining momentum scales of p < 1 GeV choosing an initial energy density for RHIC of epsilon = 30 GeV/fm^3. The nonequilibrium spatial Wilson loop is found to exhibit an area law and to become isotropic on a similar time scale.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا