We study out-of-equilibrium dynamics of intense non-abelian gauge fields. Generalizing the well-known Nielsen-Olesen instabilities for constant initial color-magnetic fields, we investigate the impact of temporal modulations and fluctuations in the initial conditions. This leads to a remarkable coexistence of the original Nielsen-Olesen instability and the subdominant phenomenon of parametric resonance. Taking into account that the fields may be correlated only over a limited transverse size, we model characteristic aspects of the dynamics of color flux tubes relevant in the context of heavy-ion collisions.
We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.
The dynamics of ultracold neutral atoms subject to a non-Abelian gauge field is investigated. In particular we analyze in detail a simple experimental scheme to achieve a constant, but non-Abelian gauge field, and discuss in the frame of this gauge field the non-Abelian Aharanov-Bohm effect. In the last part of this paper, we discuss intrinsic non-Abelian effects in the dynamics of cold atomic wavepackets.
Dynamical localization of non-Abelian gauge fields in non-compact flat $D$ dimensions is worked out. The localization takes place via a field-dependent gauge kinetic term when a field condenses in a finite region of spacetime. Such a situation typically arises in the presence of topological solitons. We construct four-dimensional low-energy effective Lagrangian up to the quadratic order in a universal manner applicable to any spacetime dimensions. We devise an extension of the $R_xi$ gauge to separate physical and unphysical modes clearly. Out of the D-dimensional non-Abelian gauge fields, the physical massless modes reside only in the four-dimensional components, whereas they are absent in the extra-dimensional components. The universality of non-Abelian gauge charges holds due to the unbroken four-dimensional gauge invariance. We illustrate our methods with models in $D=5$ (domain walls), in $D=6$ (vortices), and in $D=7$.
We investigate a gauge theory realization of non-Abelian discrete flavor symmetries and apply the gauge enhancement mechanism in heterotic orbifold models to field-theoretical model building. Several phenomenologically interesting non-Abelian discrete symmetries are realized effectively from a $U(1)$ gauge theory with a permutation symmetry. We also construct a concrete model for the lepton sector based on a $U(1)^2 rtimes S_3$ symmetry.
Motivated by application to multiple M5 branes, we study some properties of non-Abelian two-form gauge theories. We note that the fake curvature condition which is commonly used in the literature would restrict the dynamics to be either a free theory or a topological system. We then propose a modification of transformation law which simplifies the gauge transformation of 3-form field strength and enables us to write down a gauge invariant action. We then argue that a generalization of Stueckelberg mechanism naturally gives mass to the two-form gauge field. For the application to multiple M5-branes, it should be identified with the KK modes.