Do you want to publish a course? Click here

We present new magnetic heat capacity and neutron scattering results for two magnetically frustrated molybdate pyrochlores: $S=1$ oxide Lu$_2$Mo$_2$O$_7$ and $S={frac{1}{2}}$ oxynitride Lu$_2$Mo$_2$O$_5$N$_2$. Lu$_2$Mo$_2$O$_7$ undergoes a transition to an unconventional spin glass ground state at $T_f {sim} 16$ K. However, the preparation of the corresponding oxynitride tunes the nature of the ground state from spin glass to quantum spin liquid. The comparison of the static and dynamic spin correlations within the oxide and oxynitride phases presented here reveals the crucial role played by quantum fluctuations in the selection of a ground state. Furthermore, we estimate an upper limit for a gap in the spin excitation spectrum of the quantum spin liquid state of the oxynitride of ${Delta} {sim} 0.05$ meV or ${frac{Delta}{|theta|}}sim0.004$, in units of its antiferromagnetic Weiss constant ${theta} {sim}-121$ K.
We present spatial and dynamic information on the s=1/2 distorted kagome antiferromagnet volborthite, Cu3V2O7(OD)2.2D2O, obtained by polarized and inelastic neutron scattering. The instantaneous structure factor, S(Q), is dominated by nearest neighbor pair correlations, with short range order at wave vectors Q1=0.65(3) {AA}^-1 and Q2=1.15(5) {AA}^-1 emerging below 5 K. The excitation spectrum, S(Q,{omega}), reveals two steep branches dispersing from Q1 and Q2, and a flat mode at {omega}=5.0(2) meV. The results allow us to identify the cross-over at T*=1 K in 51V NMR and specific heat measurements as the build-up of correlations at Q_1. We compare our data to theoretical models proposed for volborthite, and demonstrate that the excitation spectrum can be explained by spin-wave-like excitations with anisotropic exchange parameters, as also suggested by recent local density calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا