No Arabic abstract
We present spatial and dynamic information on the s=1/2 distorted kagome antiferromagnet volborthite, Cu3V2O7(OD)2.2D2O, obtained by polarized and inelastic neutron scattering. The instantaneous structure factor, S(Q), is dominated by nearest neighbor pair correlations, with short range order at wave vectors Q1=0.65(3) {AA}^-1 and Q2=1.15(5) {AA}^-1 emerging below 5 K. The excitation spectrum, S(Q,{omega}), reveals two steep branches dispersing from Q1 and Q2, and a flat mode at {omega}=5.0(2) meV. The results allow us to identify the cross-over at T*=1 K in 51V NMR and specific heat measurements as the build-up of correlations at Q_1. We compare our data to theoretical models proposed for volborthite, and demonstrate that the excitation spectrum can be explained by spin-wave-like excitations with anisotropic exchange parameters, as also suggested by recent local density calculations.
When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly-correlated spins keep to fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here we utilize thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report on the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity (k_xy) which the charge-neutral spin excitations in a gapless SL state of the two-dimensional kagome insulator volborthite Cu_3V_2O_7(OH)_2 cdot 2H_2O exhibit, in much the same way in which charged electrons give rise to the conventional electric Hall effect. We find that k_xy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that k_xy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of that experienced by free electrons.
The kagome lattice -- a two-dimensional (2D) arrangement of corner-sharing triangles -- is at the forefront of the search for exotic states generated by magnetic frustration. Such states have been observed experimentally for Heisenberg and planar spins. In contrast, frustration of Ising spins on the kagome lattice has previously been restricted to nano-fabricated systems and spin-ice materials under applied magnetic field. Here, we show that the layered Ising magnet Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements, supported by Monte Carlo simulations, reveal a phase transition at T* = 0.3 K from a disordered spin-ice like regime to an emergent charge ordered state in which emergent charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent charges arising from kagome Ising frustration.
Our studies evidence an anisotropic magnetic order below $T_N = 32$~K. Susceptibility data in small fields of about 1~T reveal an antiferromagnetic (AFM) order for $H perp c$, whereas for $H parallel c$ the data are reminiscent of a field-induced ferromagnetic (FM) structure. At low temperatures and for $H perp c$, the field-dependent magnetization and AC susceptibility data evidence a metamagnetic transition at $H^+ = 5$~T, which is absent for $H parallel c$. We assign this to a transition from a planar cycloidal spin structure at low fields to a planar fan-like arrangement above $H^+$. A fully FM polarized state is obtained above the saturation field of $H_{perp S} = 23.7$~T at 2~K with a magnetization of $M_s = 2.8$~$mu_{rm B}{rm /Cr}$. For $H parallel c$, $M(H)$ monotonously increases and saturates at the same $M_s$ value at $H_{parallel S} = 25.1$~T at 4.2~K. Above $T_N $, the magnetic susceptibility and specific heat indicate signatures of two dimensional (2D) frustration related to the presence of planar ferromagnetic and antiferromagnetic exchange interactions. We found a pronounced nearly isotropic maximum in both properties at about $T^* = 45$~K, which is a clear fingerprint of short-range correlations and emergent spin fluctuations. Calculations based on a planar 2D Heisenberg model support our experimental findings and suggest a predominant FM exchange among nearest and AFM exchange among third-nearest neighbors. Only a minor contribution might be assigned to the antisymmetric Dzyaloshinskii-Moriya interaction possible related to the non-centrosymmetric polar space group $R3m$. Due to these competing interactions, the magnetism in AgCrSe$_{2}$, in contrast to the oxygen based delafossites, can be tuned by relatively small, experimentally accessible, magnetic fields, allowing us to establish the complete anisotropic magnetic $H-T$ phase diagram in detail.
A single crystal of the Co2+ based pyrochlore NaCaCo2F7 was studied by inelastic neutron scattering. This frustrated magnet with quenched exchange disorder remains in a strongly correlated paramagnetic state down to one 60th of the Curie-Weiss temperature. Below T_f = 2.4 K, diffuse elastic scattering develops and comprises 30 +/- 10% of the total magnetic scattering, as expected for J_{eff} = 1/2 moments frozen on a time scale that exceeds hbar/delta E=3.8 ps. The diffuse scattering is consistent with short range XY antiferromagnetism with a correlation length of 16 AA. The momentum (Q) dependence of the inelastic intensity indicates relaxing XY-like antiferromagnetic clusters at energies below ~ 5.5 meV, and collinear antiferromagnetic fluctuations above this energy. The relevant XY configurations form a continuous manifold of symmetry-related states. Contrary to well-known models that produce this continuous manifold, order-by-disorder does not select an ordered state in NaCaCo2F7 despite evidence for weak (~12 %) exchange disorder. Instead, NaCaCo2F7 freezes into short range ordered clusters that span this manifold.
We present a single crystal neutron diffraction study of the magnetic short-range correlations in Tb$_5$Ge$_4$ which orders antiferromagnetically below the Neel temperature $T_N$ $approx$ 92 K. Strong diffuse scattering arising from magnetic short-range correlations was observed in wide temperature ranges both below and above $T_N$. The antiferromagnetic ordering in Tb$_5$Ge$_4$ can be described as strongly coupled ferromagnetic block layers in the $ac$-plane that stack along the b-axis with weak antiferromagnetic inter-layer coupling. Diffuse scattering was observed along both $a^*$ and $b^*$ directions indicating three-dimensional short-range correlations. Moreover, the $q$-dependence of the diffuse scattering is Squared-Lorentzian in form suggesting a strongly clustered magnetic state that may be related to the proposed Griffiths-like phase in Gd$_5$Ge$_4$.