Do you want to publish a course? Click here

A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite time to a smooth submanifold of lower dimension. We also give a precise description of the collapsing.
181 - Chuu-Lian Terng , Zhiwei Wu 2014
We construct a sequence of commuting central affine curve flows on $R^nbackslash 0$ invariant under the action of $SL(n,R)$ and prove the following results: (a) The central affine curvatures of a solution of the j-th central affine curve flow is a solution of the j-th flow of Gelfand-Dickey (GD$_n$) hierarchy on the space of n-th order differential operators. (b) We use the solution of the Cauchy problems of the GD$_n$ flow to solve the Cauchy problems for the central affine curve flows with periodic initial data and also with initial data whose central affine curvatures are rapidly decaying. (c) We obtain a bi-Hamiltonian structure for the central affine curve flow hierarchy and prove that it arises naturally from the Poisson structures of certain co-adjoint orbits. (d) We construct Backlund transformations, infinitely many families of explicit solutions and give a permutability formula for these curve flows.
315 - Chuu-Lian Terng 2014
The Hodge star mean curvature flow on a 3-dimension Riemannian or pseudo-Riemannian manifold, the geometric Airy flow on a Riemannian manifold, the Schrodingier flow on Hermitian manifolds, and the shape operator curve flow on submanifolds are natural non-linear dispersive curve flows in geometric analysis. A curve flow is integrable if the evolution equation of the local differential invariants of a solution of the curve flow is a soliton equation. For example, the Hodge star mean curvature flow on $R^3$ and on $R^{2,1}$, the geometric Airy flow on $R^n$, the Schrodingier flow on compact Hermitian symmetric spaces, and the shape operator curve flow on an Adjoint orbit of a compact Lie group are integrable. In this paper, we give a survey of these results, describe a systematic method to construct integrable curve flows from Lax pairs of soliton equations, and discuss the Hamiltonian aspect and the Cauchy problem of these curve flows.
This is the third in a series of papers attempting to describe a uniform geometric framework in which many integrable systems can be placed. A soliton hierarchy can be constructed from a splitting of an infinite dimensional group $L$ as positive and negative subgroups L_+, L_- and a commuting sequence in the Lie algebra of L_+. Given f in L_-, there is a formal inverse scattering solution u_f of the hierarchy. When there is a 2 co-cycle that vanishes on both subalgebras of L_+ and L_-, Wilson constructed for each f in L_- a tau function tau_f for the hierarchy. In this third paper, we prove the following results for the nxn KdV hierarchy: (1) The second partials of ln(tau_f) are differential polynomials of the formal inverse scattering solution u_f. Moreover, u_f can be recovered from the second partials of ln(tau_f). (2) The natural Virasoro action on ln(tau_f) constructed in the second paper is given by partial differential operators in ln(tau_f). (3) There is a bijection between phase spaces of the nxn KdV hierarchy and the Gelfand-Dickey (GD_n) hierarchy on the space of order n linear differential operators on the line so that the flows in these two hierarchies correspond under the bijection. (4) Our Virasoro action on the nxn KdV hierarchy is constructed from a simple Virasoro action on the negative group. We show that it corresponds to the known Virasoro action on the GD_n hierarchy under the bijection.
453 - Chuu-Lian Terng , Zhiwei Wu 2014
We give the following results for Pinkalls central affine curve flow on the plane: (i) a systematic and simple way to construct the known higher commuting curve flows, conservation laws, and a bi-Hamiltonian structure, (ii) Baecklund transformations and a permutability formula, (iii) infinitely many families of explicit solutions. We also solve the Cauchy problem for periodic initial data.
There is a general method for constructing a soliton hierarchy from a splitting of a loop group as a positive and a negative sub-groups together with a commuting linearly independent sequence in the positive Lie subalgebra. Many known soliton hierarchies can be constructed this way. The formal inverse scattering associates to each f in the negative subgroup a solution u_f of the hierarchy. When there is a 2 co-cycle of the Lie algebra that vanishes on both sub-algebras, Wilson constructed a tau function tau_f for each element f in the negative subgroup. In this paper, we give integral formulas for variations of ln(tau_f) and second partials of ln(tau_f), discuss whether we can recover solutions u_f from tau_f, and give a general construction of actions of the positive half of the Virasoro algebra on tau functions. We write down formulas relating tau functions and formal inverse scattering solutions and the Virasoro vector fields for the GL(n,C)-hierarchy.
70 - Chuu-Lian Terng 2010
We introduce two families of soliton hierarchies: the twisted hierarchies associated to symmetric spaces. The Lax pairs of these two hierarchies are Laurent polynomials in the spectral variable. Our constructions gives a hierarchy of commuting flows for the generalized sine-Gordon equation (GSGE), which is the Gauss-Codazzi equation for n-dimensional submanifolds in Euclidean (2n-1)-space with constant sectional curvature -1. In fact, the GSGE is the first order system associated to a twisted Grassmannian system. We also study symmetries for the GSGE.
106 - Chuu-Lian Terng 2010
We give a survey of the following six closely related topics: (i) a general method for constructing a soliton hierarchy from a splitting of a loop algebra into positive and negative subalgebras, together with a sequence of commuting positive elements, (ii) a method---based on (i)---for constructing soliton hierarchies from a symmetric space, (iii) the dressing action of the negative loop subgroup on the space of solutions of the related soliton equation, (iv) classical Backlund, Christoffel, Lie, and Ribaucour transformations for surfaces in three-space and their relation to dressing actions, (v) methods for constructing a Lax pair for the Gauss-Codazzi Equation of certain submanifolds that admit Lie transforms, (vi) how soliton theory can be used to generalize classical soliton surfaces to submanifolds of higher dimension and co-dimension.
A diagonal metric sum_{i=1}^n g_{ii} dx_i^2 is termed Guichard_k if sum_{i=1}^{n-k}g_{ii}-sum_{i=n-k+1}^n g_{ii}=0. A hypersurface in R^{n+1} is isothermic_k if it admits line of curvature co-ordinates such that its induced metric is Guichard_k. Isothermic_1 surfaces in R^3 are the classical isothermic surfaces in R^3. Both isothermic_k hypersurfaces in R^{n+1} and Guichard_k orthogonal co-ordinate systems on R^n are invariant under conformal transformations. A sequence of n isothermic_k hypersurfaces in R^{n+1} (Guichard_k orthogonal co-ordinate systems on R^n resp.) is called a Combescure sequence if the consecutive hypersurfaces (orthogonal co-ordinate systems resp.) are related by Combescure transformations. We give a correspondence between Combescure sequences of Guichard_k orthogonal co-ordinate systems on R^n and solutions of the O(2n-k,k)/O(n)xO(n-k,k)-system, and a correspondence between Combescure sequences of isothermic_k hypersurfaces in R^{n+1} and solutions of the O(2n+1-k,k)/O(n+1)xO(n-k,k)-system, both being integrable systems. Methods from soliton theory can therefore be used to construct Christoffel, Ribaucour, and Lie transforms, and to describe the moduli spaces of these geometric objects and their loop group symmetries.
E. Cartan proved that conformally flat hypersurfaces in S^{n+1} for n>3 have at most two distinct principal curvatures and locally envelop a one-parameter family of (n-1)-spheres. We prove that the Gauss-Codazzi equation for conformally flat hypersurfaces in S^4 is a soliton equation, and use a dressing action from soliton theory to construct geometric Ribaucour transforms of these hypersurfaces. We describe the moduli of these hypersurfaces in S^4 and their loop group symmetries. We also generalise these results to conformally flat n-immersions in (2n-2)-spheres with flat normal bundle and constant multiplicities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا