No Arabic abstract
The Hodge star mean curvature flow on a 3-dimension Riemannian or pseudo-Riemannian manifold, the geometric Airy flow on a Riemannian manifold, the Schrodingier flow on Hermitian manifolds, and the shape operator curve flow on submanifolds are natural non-linear dispersive curve flows in geometric analysis. A curve flow is integrable if the evolution equation of the local differential invariants of a solution of the curve flow is a soliton equation. For example, the Hodge star mean curvature flow on $R^3$ and on $R^{2,1}$, the geometric Airy flow on $R^n$, the Schrodingier flow on compact Hermitian symmetric spaces, and the shape operator curve flow on an Adjoint orbit of a compact Lie group are integrable. In this paper, we give a survey of these results, describe a systematic method to construct integrable curve flows from Lax pairs of soliton equations, and discuss the Hamiltonian aspect and the Cauchy problem of these curve flows.
In this note we establish exponentially fast smooth convergence for global curve diffusion flows, and discuss open problems relating embeddedness to global existence (Gigas conjecture) and the shape of Type I singularities (Chous conjecture).
We construct a sequence of commuting central affine curve flows on $R^nbackslash 0$ invariant under the action of $SL(n,R)$ and prove the following results: (a) The central affine curvatures of a solution of the j-th central affine curve flow is a solution of the j-th flow of Gelfand-Dickey (GD$_n$) hierarchy on the space of n-th order differential operators. (b) We use the solution of the Cauchy problems of the GD$_n$ flow to solve the Cauchy problems for the central affine curve flows with periodic initial data and also with initial data whose central affine curvatures are rapidly decaying. (c) We obtain a bi-Hamiltonian structure for the central affine curve flow hierarchy and prove that it arises naturally from the Poisson structures of certain co-adjoint orbits. (d) We construct Backlund transformations, infinitely many families of explicit solutions and give a permutability formula for these curve flows.
In this paper, we consider a new length preserving curve flow for convex curves in the plane. We show that the global flow exists, the area of the region bounded by the evolving curve is increasing, and the evolving curve converges to the circle in C-infinity topology as t goes to infinity.
Langer and Perline proved that if x is a solution of the geometric Airy curve flow on R^n then there exists a parallel normal frame along x(. ,t) for each t such that the corresponding principal curvatures satisfy the (n-1) component modified KdV (vmKdV_n). They also constructed higher order curve flows whose principal curvatures are solutions of the higher order flows in the vmKdV_n soliton hierarchy. In this paper, we write down a Poisson structure on the space of curves in R^n parametrized by the arc-length, show that the geometric Airy curve flow is Hamiltonian, write down a sequence of commuting Hamiltonians, and construct Backlund transformations and explicit soliton solutions.
We give a twistorial interpretation of geometric structures on a Riemannian manifold, as sections of homogeneous fibre bundles, following an original insight by Wood (2003). The natural Dirichlet energy induces an abstract harmonicity condition, which gives rise to a geometric gradient flow. We establish a number of analytic properties for this flow, such as uniqueness, smoothness, short-time existence, and some sufficient conditions for long-time existence. This description potentially subsumes a large class of geometric PDE problems from different contexts. As applications, we recover and unify a number of results in the literature: for the isometric flow of ${rm G}_2$-structures, by Grigorian (2017, 2019), Bagaglini (2019), and Dwivedi-Gianniotis-Karigiannis (2019); and for harmonic almost complex structures, by He (2019) and He-Li (2019). Our theory also establishes original properties regarding harmonic flows of parallelisms and almost contact structures.