Do you want to publish a course? Click here

N-dimension Central Affine Curve Flows

195   0   0.0 ( 0 )
 Added by Chuu-Lian Terng
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a sequence of commuting central affine curve flows on $R^nbackslash 0$ invariant under the action of $SL(n,R)$ and prove the following results: (a) The central affine curvatures of a solution of the j-th central affine curve flow is a solution of the j-th flow of Gelfand-Dickey (GD$_n$) hierarchy on the space of n-th order differential operators. (b) We use the solution of the Cauchy problems of the GD$_n$ flow to solve the Cauchy problems for the central affine curve flows with periodic initial data and also with initial data whose central affine curvatures are rapidly decaying. (c) We obtain a bi-Hamiltonian structure for the central affine curve flow hierarchy and prove that it arises naturally from the Poisson structures of certain co-adjoint orbits. (d) We construct Backlund transformations, infinitely many families of explicit solutions and give a permutability formula for these curve flows.



rate research

Read More

469 - Chuu-Lian Terng , Zhiwei Wu 2014
We give the following results for Pinkalls central affine curve flow on the plane: (i) a systematic and simple way to construct the known higher commuting curve flows, conservation laws, and a bi-Hamiltonian structure, (ii) Baecklund transformations and a permutability formula, (iii) infinitely many families of explicit solutions. We also solve the Cauchy problem for periodic initial data.
Let $R^{n+1, n}$ be the vector space $R^{2n+1}$ equipped with the bilinear form $(X,Y)=X^t C_n Y$ of index $n$, where $C_n= sum_{i=1}^{2n+1} (-1)^{n+i-1} e_{i, 2n+2-i}$. A smooth $gamma: Rto R^{n+1,n}$ is {it isotropic} if $gamma, gamma_x, ldots, gamma_x^{(2n)}$ are linearly independent and the span of $gamma, ldots, gamma_x^{(n-1)}$ is isotropic. Given an isotropic curve, we show that there is a unique up to translation parameter such that $(gamma_x^{(n)}, gamma_x^{(n)})=1$ (we call such parameter the isotropic parameter) and there also exists a natural moving frame. In this paper, we consider two sequences of curve flows on the space of isotropic curves parametrized by isotropic parameter. We show that differential invariants of these isotropic curves satisfy Drinfeld-Sokolovs KdV type soliton hierarchies associated to the affine Kac-Moody algebra $hat B_n^{(1)}$ and $hat A_{2n}^{(2)}$ Then we use techniques from soliton theory to construct bi-Hamiltonian structure, conservation laws, Backlund transformations and permutability formulas for these curve flows.
339 - Chuu-Lian Terng 2014
The Hodge star mean curvature flow on a 3-dimension Riemannian or pseudo-Riemannian manifold, the geometric Airy flow on a Riemannian manifold, the Schrodingier flow on Hermitian manifolds, and the shape operator curve flow on submanifolds are natural non-linear dispersive curve flows in geometric analysis. A curve flow is integrable if the evolution equation of the local differential invariants of a solution of the curve flow is a soliton equation. For example, the Hodge star mean curvature flow on $R^3$ and on $R^{2,1}$, the geometric Airy flow on $R^n$, the Schrodingier flow on compact Hermitian symmetric spaces, and the shape operator curve flow on an Adjoint orbit of a compact Lie group are integrable. In this paper, we give a survey of these results, describe a systematic method to construct integrable curve flows from Lax pairs of soliton equations, and discuss the Hamiltonian aspect and the Cauchy problem of these curve flows.
249 - Glen Wheeler 2020
In this note we establish exponentially fast smooth convergence for global curve diffusion flows, and discuss open problems relating embeddedness to global existence (Gigas conjecture) and the shape of Type I singularities (Chous conjecture).
Classification of curves up to affine transformation in a finite dimensional space was studied by some different methods. In this paper, we achieve the exact formulas of affine invariants via the equivalence problem and in the view of Cartans lemma and then, state a necessary and sufficient condition for classification of n--Curves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا