Do you want to publish a course? Click here

To determine and analyze arbitrary left non-degenerate set-theoretic solutions of the Yang-Baxter equation (not necessarily bijective), we introduce an associative algebraic structure, called a YB-semitruss, that forms a subclass of the category of semitrusses as introduced by Brzezinski. Fundamental examples of YB-semitrusses are structure monoids of left non-degenerate set-theoretic solutions and (skew) left braces. Gateva-Ivanova and Van den Bergh introduced structure monoids and showed their importance (as well as that of the structure algebra) for studying involutive non-degenerate solutions. Skew left braces were introduced by Guarnieri, Vendramin and Rump to deal with bijective non-degenerate solutions. Hence, YB-semitrusses also yield a unified treatment of these different algebraic structures. The algebraic structure of YB-semitrusses is investigated, and as a consequence, it is proven, for example, that any finite left non-degenerate set-theoretic solution of the Yang-Baxter equation is right non-degenerate if and only if it is bijective. Furthermore, it is shown that some finite left non-degenerate solutions can be reduced to non-degenerate solutions of smaller size. The structure algebra of a finitely generated YB-semitruss is an algebra defined by homogeneous quadratic relations. We prove that it often is a left Noetherian algebra of finite Gelfand-Kirillov dimension that satisfies a polynomial identity, but in general, it is not right Noetherian.
The distributive laws of ring theory are fundamental equalities in algebra. However, recently in the study of the Yang-Baxter equation, many algebraic structures with alternative distributive laws were defined. In an effort to study these left distributive laws and the interaction they entail on the algebraic structures, Brzezinski introduced skew left trusses and left semi-trusses. In particular the class of left semi-trusses is very wide, since it contains all rings, associative algebras and distributive lattices. In this paper, we investigate the subclass of left semi-trusses that behave like the algebraic structures that came up in the study of the Yang-Baxter equation. We study the interaction of the operations and what this interaction entails on their respective semigroups. In particular, we prove that in the finite case the additive structure is a completely regular semigroup. Secondly, we apply our results on a particular instance of a left semi-truss called an almost left semi-brace, introduced by Miccoli to study its algebraic structure. In particular, we show that one can associate a left semi-brace to any almost left semi-brace. Furthermore, we show that the set-theoretic solutions of the Yang-Baxter equation originating from almost left semi-braces arise from this correspondence.
For a finite involutive non-degenerate solution $(X,r)$ of the Yang--Baxter equation it is known that the structure monoid $M(X,r)$ is a monoid of I-type, and the structure algebra $K[M(X,r)]$ over a field $K$ share many properties with commutative polynomial algebras, in particular, it is a Noetherian PI-domain that has finite Gelfand--Kirillov dimension. In this paper we deal with arbitrary finite (left) non-degenerate solutions. Although the structure of both the monoid $M(X,r)$ and the algebra $K[M(X,r)]$ is much more complicated than in the involutive case, we provide some deep insights. In this general context, using a realization of Lebed and Vendramin of $M(X,r)$ as a regular submonoid in the semidirect product $A(X,r)rtimesmathrm{Sym}(X)$, where $A(X,r)$ is the structure monoid of the rack solution associated to $(X,r)$, we prove that $K[M(X,r)]$ is a module finite normal extension of a commutative affine subalgebra. In particular, $K[M(X,r)]$ is a Noetherian PI-algebra of finite Gelfand--Kirillov dimension bounded by $|X|$. We also characterize, in ring-theoretical terms of $K[M(X,r)]$, when $(X,r)$ is an involutive solution. This characterization provides, in particular, a positive answer to the Gateva-Ivanova conjecture concerning cancellativity of $M(X,r)$. These results allow us to control the prime spectrum of the algebra $K[M(X,r)]$ and to describe the Jacobson radical and prime radical of $K[M(X,r)]$. Finally, we give a matrix-type representation of the algebra $K[M(X,r)]/P$ for each prime ideal $P$ of $K[M(X,r)]$. As a consequence, we show that if $K[M(X,r)]$ is semiprime then there exist finitely many finitely generated abelian-by-finite groups, $G_1,dotsc,G_m$, each being the group of quotients of a cancellative subsemigroup of $M(X,r)$ such that the algebra $K[M(X,r)]$ embeds into $mathrm{M}_{v_1}(K[G_1])timesdotsbtimes mathrm{M}_{v_m}(K[G_m])$.
Let $r:X^{2}rightarrow X^{2}$ be a set-theoretic solution of the Yang-Baxter equation on a finite set $X$. It was proven by Gateva-Ivanova and Van den Bergh that if $r$ is non-degenerate and involutive then the algebra $Klangle x in X mid xy =uv mbox{ if } r(x,y)=(u,v)rangle$ shares many properties with commutative polynomial algebras in finitely many variables; in particular this algebra is Noetherian, satisfies a polynomial identity and has Gelfand-Kirillov dimension a positive integer. Lebed and Vendramin recently extended this result to arbitrary non-degenerate bijective solutions. Such solutions are naturally associated to finite skew left braces. In this paper we will prove an analogue result for arbitrary solutions $r_B$ that are associated to a left semi-brace $B$; such solutions can be degenerate or can even be idempotent. In order to do so we first describe such semi-braces and we prove some decompositions results extending results of Catino, Colazzo, and Stefanelli.
82 - Arne Van Antwerpen 2017
In this paper, we show that all Coleman automorphisms of a finite group with self-central minimal non-trivial characteristic subgroup are inner; therefore the normalizer property holds for these groups. Using our methods we show that the holomorph and wreath product of finite simple groups, among others, have no non-inner Coleman automorphisms. As a further application of our theorems, we provide partial answers to questions raised by M. Hertweck and W. Kimmerle. Furthermore, we characterize the Coleman automorphisms of extensions of a finite nilpotent group by a cyclic $p$-group. Lastly, we note that class-preserving automorphisms of 2-power order of some nilpotent-by-nilpotent groups are inner, extending a result by J. Hai and J. Ge.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا