Do you want to publish a course? Click here

Left non-degenerate set-theoretic solutions of the Yang-Baxter equation and semitrusses

124   0   0.0 ( 0 )
 Added by Ilaria Colazzo
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

To determine and analyze arbitrary left non-degenerate set-theoretic solutions of the Yang-Baxter equation (not necessarily bijective), we introduce an associative algebraic structure, called a YB-semitruss, that forms a subclass of the category of semitrusses as introduced by Brzezinski. Fundamental examples of YB-semitrusses are structure monoids of left non-degenerate set-theoretic solutions and (skew) left braces. Gateva-Ivanova and Van den Bergh introduced structure monoids and showed their importance (as well as that of the structure algebra) for studying involutive non-degenerate solutions. Skew left braces were introduced by Guarnieri, Vendramin and Rump to deal with bijective non-degenerate solutions. Hence, YB-semitrusses also yield a unified treatment of these different algebraic structures. The algebraic structure of YB-semitrusses is investigated, and as a consequence, it is proven, for example, that any finite left non-degenerate set-theoretic solution of the Yang-Baxter equation is right non-degenerate if and only if it is bijective. Furthermore, it is shown that some finite left non-degenerate solutions can be reduced to non-degenerate solutions of smaller size. The structure algebra of a finitely generated YB-semitruss is an algebra defined by homogeneous quadratic relations. We prove that it often is a left Noetherian algebra of finite Gelfand-Kirillov dimension that satisfies a polynomial identity, but in general, it is not right Noetherian.



rate research

Read More

103 - F. Cedo , E. Jespers , J. Okninski 2020
To every involutive non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation on a finite set $X$ there is a naturally associated finite solvable permutation group ${mathcal G}(X,r)$ acting on $X$. We prove that every primitive permutation group of this type is of prime order $p$. Moreover, $(X,r)$ is then a so called permutation solution determined by a cycle of length $p$. This solves a problem recently asked by A. Ballester-Bolinches. The result opens a new perspective on a possible approach to the classification problem of all involutive non-degenerate set-theoretic solutions.
Given a set-theoretic solution $(X,r)$ of the Yang--Baxter equation, we denote by $M=M(X,r)$ the structure monoid and by $A=A(X,r)$, respectively $A=A(X,r)$, the left, respectively right, derived structure monoid of $(X,r)$. It is shown that there exist a left action of $M$ on $A$ and a right action of $M$ on $A$ and 1-cocycles $pi$ and $pi$ of $M$ with coefficients in $A$ and in $A$ with respect to these actions respectively. We investigate when the 1-cocycles are injective, surjective or bijective. In case $X$ is finite, it turns out that $pi$ is bijective if and only if $(X,r)$ is left non-degenerate, and $pi$ is bijective if and only if $(X,r)$ is right non-degenerate. In case $(X,r) $ is left non-degenerate, in particular $pi$ is bijective, we define a semi-truss structure on $M(X,r)$ and then we show that this naturally induces a set-theoretic solution $(bar M, bar r)$ on the least cancellative image $bar M= M(X,r)/eta$ of $M(X,r)$. In case $X$ is naturally embedded in $M(X,r)/eta$, for example when $(X,r)$ is irretractable, then $bar r$ is an extension of $r$. It also is shown that non-degenerate irretractable solutions necessarily are bijective.
For a finite involutive non-degenerate solution $(X,r)$ of the Yang--Baxter equation it is known that the structure monoid $M(X,r)$ is a monoid of I-type, and the structure algebra $K[M(X,r)]$ over a field $K$ share many properties with commutative polynomial algebras, in particular, it is a Noetherian PI-domain that has finite Gelfand--Kirillov dimension. In this paper we deal with arbitrary finite (left) non-degenerate solutions. Although the structure of both the monoid $M(X,r)$ and the algebra $K[M(X,r)]$ is much more complicated than in the involutive case, we provide some deep insights. In this general context, using a realization of Lebed and Vendramin of $M(X,r)$ as a regular submonoid in the semidirect product $A(X,r)rtimesmathrm{Sym}(X)$, where $A(X,r)$ is the structure monoid of the rack solution associated to $(X,r)$, we prove that $K[M(X,r)]$ is a module finite normal extension of a commutative affine subalgebra. In particular, $K[M(X,r)]$ is a Noetherian PI-algebra of finite Gelfand--Kirillov dimension bounded by $|X|$. We also characterize, in ring-theoretical terms of $K[M(X,r)]$, when $(X,r)$ is an involutive solution. This characterization provides, in particular, a positive answer to the Gateva-Ivanova conjecture concerning cancellativity of $M(X,r)$. These results allow us to control the prime spectrum of the algebra $K[M(X,r)]$ and to describe the Jacobson radical and prime radical of $K[M(X,r)]$. Finally, we give a matrix-type representation of the algebra $K[M(X,r)]/P$ for each prime ideal $P$ of $K[M(X,r)]$. As a consequence, we show that if $K[M(X,r)]$ is semiprime then there exist finitely many finitely generated abelian-by-finite groups, $G_1,dotsc,G_m$, each being the group of quotients of a cancellative subsemigroup of $M(X,r)$ such that the algebra $K[M(X,r)]$ embeds into $mathrm{M}_{v_1}(K[G_1])timesdotsbtimes mathrm{M}_{v_m}(K[G_m])$.
355 - F. Cedo , E. Jespers , J. Okninski 2019
Given a finite non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation and a field $K$, the structure $K$-algebra of $(X,r)$ is $A=A(K,X,r)=Klangle Xmid xy=uv mbox{ whenever }r(x,y)=(u,v)rangle$. Note that $A=oplus_{ngeq 0} A_n$ is a graded algebra, where $A_n$ is the linear span of all the elements $x_1cdots x_n$, for $x_1,dots ,x_nin X$. One of the known results asserts that the maximal possible value of $dim (A_2)$ corresponds to involutive solutions and implies several deep and important properties of $A(K,X,r)$. Following recent ideas of Gateva-Ivanova cite{GI2018}, we focus on the minimal possible values of the dimension of $A_2$. We determine lower bounds and completely classify solutions $(X,r)$ for which these bounds are attained in the general case and also in the square-free case. This is done in terms of the so called derived solution, introduced by Soloviev and closely related with racks and quandles. Several problems posed in cite{GI2018} are solved.
In this paper we discuss and characterize several set-theoretic solutions of the Yang-Baxter equation obtained using skew lattices, an algebraic structure that has not yet been related to the Yang-Baxter equation. Such solutions are degenerate in general, and thus different from solutions obtained from braces and other algebraic structures. Our main result concerns a description of a set-theoretic solution of the Yang-Baxter equation, obtained from an arbitrary skew lattice. We also provide a construction of a cancellative and distributive skew lattice on a given family of pairwise disjoint sets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا