A fully differential calculation in perturbative quantum chromodynamics is presented for the production of massive photon pairs at hadron colliders. All next-to-leading order perturbative contributions from quark-antiquark, gluon-(anti)quark, and glu
on-gluon subprocesses are included, as well as all-orders resummation of initial-state gluon radiation valid at next-to-next-to-leading logarithmic accuracy. The region of phase space is specified in which the calculation is most reliable. Good agreement is demonstrated with data from the Fermilab Tevatron, and predictions are made for more detailed tests with CDF and DO data. Predictions are shown for distributions of diphoton pairs produced at the energy of the Large Hadron Collider (LHC). Distributions of the diphoton pairs from the decay of a Higgs boson are contrasted with those produced from QCD processes at the LHC, showing that enhanced sensitivity to the signal can be obtained with judicious selection of events.
Partial cubes are isometric subgraphs of hypercubes. Structures on a graph defined by means of semicubes, and Djokovi{c}s and Winklers relations play an important role in the theory of partial cubes. These structures are employed in the paper to char
acterize bipartite graphs and partial cubes of arbitrary dimension. New characterizations are established and new proofs of some known results are given. The operations of Cartesian product and pasting, and expansion and contraction processes are utilized in the paper to construct new partial cubes from old ones. In particular, the isometric and lattice dimensions of finite partial cubes obtained by means of these operations are calculated.
A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. I
n particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle and a simple cosmological model.
The goal of this paper is to construct invariant dynamical objects for a (not necessarily invertible) smooth self map of a compact manifold. We prove a result that takes advantage of differences in rates of expansion in the terms of a sheaf cohomolog
ical long exact sequence to create unique lifts of finite dimensional invariant subspaces of one term of the sequence to invariant subspaces of the preceding term. This allows us to take invariant cohomological classes and under the right circumstances construct unique currents of a given type, including unique measures of a given type, that represent those classes and are invariant under pullback. A dynamically interesting self map may have a plethora of invariant measures, so the uniquess of the constructed currents is important. It means that if local growth is not too big compared to the growth rate of the cohomological class then the expanding cohomological class gives sufficient marching orders to the system to prohibit the formation of any other such invariant current of the same type (say from some local dynamical subsystem). Because we use subsheaves of the sheaf of currents we give conditions under which a subsheaf will have the same cohomology as the sheaf containing it. Using a smoothing argument this allows us to show that the sheaf cohomology of the currents under consideration can be canonically identified with the deRham cohomology groups. Our main theorem can be applied in both the smooth and holomorphic setting.
The intelligent acoustic emission locator is described in Part I, while Part II discusses blind source separation, time delay estimation and location of two simultaneously active continuous acoustic emission sources. The location of acoustic emissi
on on complicated aircraft frame structures is a difficult problem of non-destructive testing. This article describes an intelligent acoustic emission source locator. The intelligent locator comprises a sensor antenna and a general regression neural network, which solves the location problem based on learning from examples. Locator performance was tested on different test specimens. Tests have shown that the accuracy of location depends on sound velocity and attenuation in the specimen, the dimensions of the tested area, and the properties of stored data. The location accuracy achieved by the intelligent locator is comparable to that obtained by the conventional triangulation method, while the applicability of the intelligent locator is more general since analysis of sonic ray paths is avoided. This is a promising method for non-destructive testing of aircraft frame structures by the acoustic emission method.
In this paper, we introduce the on-line Viterbi algorithm for decoding hidden Markov models (HMMs) in much smaller than linear space. Our analysis on two-state HMMs suggests that the expected maximum memory used to decode sequence of length $n$ with
$m$-state HMM can be as low as $Theta(mlog n)$, without a significant slow-down compared to the classical Viterbi algorithm. Classical Viterbi algorithm requires $O(mn)$ space, which is impractical for analysis of long DNA sequences (such as complete human genome chromosomes) and for continuous data streams. We also experimentally demonstrate the performance of the on-line Viterbi algorithm on a simple HMM for gene finding on both simulated and real DNA sequences.
We discussed quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S. Zakrzewski classification correspond to twisted deformations of Abelian and Jordanian types
. A part of twists corresponding to the r-matrices of Zakrzewski classification are given in explicit form.
The pure spinor formulation of the ten-dimensional superstring leads to manifestly supersymmetric loop amplitudes, expressed as integrals in pure spinor superspace. This paper explores different methods to evaluate these integrals and then uses them
to calculate the kinematic factors of the one-loop and two-loop massless four-point amplitudes involving two and four Ramond states.
In this article we discuss a relation between the string topology and differential forms based on the theory of Chens iterated integrals and the cyclic bar complex.
The path integral over Euclidean geometries for the recently suggested density matrix of the Universe is shown to describe a microcanonical ensemble in quantum cosmology. This ensemble corresponds to a uniform (weight one) distribution in phase space
of true physical variables, but in terms of the observable spacetime geometry it is peaked about complex saddle-points of the {em Lorentzian} path integral. They are represented by the recently obtained cosmological instantons limited to a bounded range of the cosmological constant. Inflationary cosmologies generated by these instantons at late stages of expansion undergo acceleration whose low-energy scale can be attained within the concept of dynamically evolving extra dimensions. Thus, together with the bounded range of the early cosmological constant, this cosmological ensemble suggests the mechanism of constraining the landscape of string vacua and, simultaneously, a possible solution to the dark energy problem in the form of the quasi-equilibrium decay of the microcanonical state of the Universe.