ترغب بنشر مسار تعليمي؟ اضغط هنا

Deflected Anomaly Mediation and Neutralino Dark Matter

261   0   0.0 ( 0 )
 نشر من قبل Andrea Lionetto
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the phenomenology of the neutralino dark matter in the so called deflected anomaly mediation scenario. This scheme is obtained from the minimal anomaly mediated scenario by introducing a gauge mediated sector with $N_f$ messenger fields. Unlike the former scheme the latter has no tachyons. We find that the neutralino is still the LSP in a wide region of the parameter space: it is essentially a pure bino in the scenario with $N_f=1$ while it can also be a pure higgsino for $N_f>1$. This is very different from the naive anomaly mediated scenario which predicts a wino like neutralino. Moreover we do not find any tachyonic scalars in this scheme. After computing the relic density (considering all the possible coannihilations) we find that there are regions in the parameter space with values compatible with the latest WMAP results with no need to consider moduli fields that decay in the early universe.

قيم البحث

اقرأ أيضاً

75 - A. M. Lionetto 2007
We study the effects of a non thermal neutralino production, due to the late decay in the early universe of a single modulus field, in the context of the deflected anomaly mediated scenario. In the regime in which the average number of neutralino pro duced in each modulus decaying process is $bar{N}_{{rm LSP}}ll 1$ also models with a thermal relic density below WMAP data became acceptable models. We find out that these models belong to three different classes with the common feature that the low thermal relic density is entirely due to coannihilation effects. The neutralino annihilation cross section for these classes of models is not particularly high compared with the highest cross sections attainable in the generic framework of the MSSM. Hence the detection prospects either by direct or indirect WIMP search experiments are not encouraging.
We consider models which are natural extensions of those where supersymmetry is broken at low energy scales and transmitted to visible matter by gauge interactions. We investigate the situation where the quark and lepton superfields of the MSSM are l ocalized to a brane in a higher dimensional space while the messenger fields and the sector which breaks supersymmetry dynamically are localized to another brane in the same space. The MSSM gauge and Higgs fields are assumed to propagate in the bulk. If some of the messenger fields and the Higgs fields have the same quantum numbers, this allows the possibility of mixing between these fields so that the physical Higgs and messenger fields are admixtures of the brane and bulk fields. This manifests itself in direct couplings of the quark and lepton fields to the physical messengers that are proportional to the MSSM Yukawa couplings and hence preserve the flavor structure of the CKM matrix. The result is new contributions to the soft supersymmetry breaking parameters that are related to the Yukawa couplings and which therefore naturally satisfy the constraints from FCNCs. For messenger scales greater then 1000 TeV these new contributions are parametrically of the same order of magnitude as gauge mediation. This scenario naturally avoids the cosmological problems associated with stable messengers and admits a simple and natural solution to the $mu$ problem based on the NMSSM.
In the supersymmetric (SUSY) standard model, the lightest neutralino may be the lightest SUSY particle (LSP), and it is is a candidate of the dark matter in the universe. The LSP dark matter might be produced by the non-thermal process such as heavy particle decay after decoupling of the thermal relic LSP. If the produced LSP is relativistic, and does not scatter enough in the thermal bath, the neutralino LSP may contribute as the warm dark matter (WDM) to wash out the small scale structure of O(0.1) Mpc. In this letter we calculate the energy reduction of the neutralino LSP in the thermal bath and study whether the LSP can be the WDM. If temperature of the production time T_I is smaller than 5MeV, the bino-like LSP can be the WDM and may contribute to the small-scale structure of O(0.1) Mpc. The Higgsino-like LSP might also work as the WDM if T_I< 2MeV. The wino-like LSP cannot be the WDM in the favoured parameter region.
We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario deflected mirage mediation, which is a generalization of the KKLT-motivated mirage me diation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. In some cases, this results in a gluino LSP and light stops; in other regions of parameter space, the LSP can be a well-tempered neutralino. We demonstrate explicitly that competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by addressing the stabilization of the gauge singlet field which is responsible for the masses of the messenger fields. For viable stabilization mechanisms, the relation between the gauge and anomaly contributions is identical in most cases to that of deflected anomaly mediation, despite the presence of the Kahler modulus. Turning to TeV scale phenomenology, we analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra. The approach sets the stage for studies of such mixed scenarios of supersymmetry breaking at the LHC.
We study the scenario of gravitino DM with a general neutralino NLSP in a model independent way. We consider all neutralino decay channels and compare them with the most recent BBN constraints. We check how those bounds are relaxed for a Higgsino or a Wino NLSP in comparison to the Bino neutralino case and look for possible loopholes in the general MSSM parameter space.We determine constraints on the gravitino and neutralino NLSP mass and comment on the possibility of detecting these scenarios at colliders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا