ترغب بنشر مسار تعليمي؟ اضغط هنا

Model Bond albedos of extrasolar giant planets

113   0   0.0 ( 0 )
 نشر من قبل Christopher R. Gelino
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The atmospheres of extrasolar giant planets are modeled with various effective temperatures and gravities, with and without clouds. Bond albedos are computed by calculating the ratio of the flux reflected by a planet (integrated over wavelength) to the total stellar flux incident on the planet. This quantity is useful for estimating the effective temperature and evolution of a planet. We find it is sensitive to the stellar type of the primary. For a 5 M_Jup planet the Bond albedo varies from 0.4 to 0.3 to 0.06 as the primary star varies from A5V to G2V to M2V in spectral type. It is relatively insensitive to the effective temperature and gravity for cloud--free planets. Water clouds increase the reflectivity of the planet in the red, which increases the Bond albedo. The Bond albedo increases by an order of magnitude for a 13 M_Jup planet with an M2V primary when water clouds are present. Silicate clouds, on the other hand, can either increase or decrease the Bond albedo, depending on whether there are many small grains (the former) or few large grains (the latter).

قيم البحث

اقرأ أيضاً

The reflected spectra of extrasolar giant planets are primarily influenced by Rayleigh scattering, molecular absorption, and atmospheric condensates. We present model geometric albedo and phase integral spectra and Bond albedos for planets and brown dwarfs with masses between 0.8 and 70 Jupiter masses. Rayleigh scattering predominates in the blue while molecular absorption removes most red and infrared photons. Thus cloud-free atmospheres, found on giant planets with effective temperatures exceeding about 400 K, are quite dark in reflected light beyond 0.6 microns. In cooler atmospheres first water clouds and then other condensates provide a bright reflecting layer. Only planets with cloudy atmospheres will be detectable in reflected light beyond 1 micron. Thermal emission dominates the near-infrared for warm objects with clear atmospheres. However the presence of other condensates, not considered here, may brighten some planets in reflected near-infrared light and darken them in the blue and UV. Bond albedos, the ratio of the total reflected to incident power, are sensitive to the spectral type of the primary. Most incident photons from early type stars will be Rayleigh scattered, while most incident photons from late type stars will be absorbed. The Bond albedo of a given planet thus may range from 0.4 to 0.05, depending on the primary type. Condensation of a water cloud increases the Bond albedo of a given planet by up to a factor of two. The spectra of cloudy planets are strongly influenced by poorly constrained cloud microphysical properties, particularly particle size and supersaturation. Both Bond and geometric albedos are comparatively less sensitive to variations in planet mass and effective temperature.
We revisit the tidal stability of extrasolar systems harboring a transiting planet and demonstrate that, independently of any tidal model, none but one (HAT-P-2b) of these planets has a tidal equilibrium state, which implies ultimately a collision of these objects with their host star. Consequently, conventional circularization and synchronization timescales cannot be defined because the corresponding states do not represent the endpoint of the tidal evolution. Using numerical simulations of the coupled tidal equations for the spin and orbital parameters of each transiting planetary system, we confirm these predictions and show that the orbital eccentricity and the stellar obliquity do not follow the usually assumed exponential relaxation but instead decrease significantly, reaching eventually a zero value, only during the final runaway merging of the planet with the star. The only characteristic evolution timescale of {it all} rotational and orbital parameters is the lifetime of the system, which crucially depends on the magnitude of tidal dissipation within the star. These results imply that the nearly circular orbits of transiting planets and the alignment between the stellar spin axis and the planetary orbit are unlikely to be due to tidal dissipation. Other dissipative mechanisms, for instance interactions with the protoplanetary disk, must be invoked to explain these properties.
Among the hot Jupiters that transit their parent stars known to date, the two best candidates to be observed with transmission spectroscopy in the mid-infrared (MIR) are HD189733b and HD209458b, due to their combined characteristics of planetary dens ity, orbital parameters and parent star distance and brightness. Here we simulate transmission spectra of these two planets during their primary eclipse in the MIR, and we present sensitivity studies of the spectra to the changes of atmospheric thermal properties, molecular abundances and C/O ratios. Our model predicts that the dominant species absorbing in the MIR on hot Jupiters are water vapor and carbon monoxide, and their relative abundances are determined by the C/O ratio. Since the temperature profile plays a secondary role in the transmission spectra of hot Jupiters compared to molecular abundances, future primary eclipse observations in the MIR of those objects might give an insight on EGP atmospheric chemistry. We find here that the absorption features caused by water vapor and carbon monoxide in a cloud-free atmosphere, are deep enough to be observable by the present and future generation of space-based observatories, such as Spitzer Space Telescope and James Webb Space Telescope. We discuss our results in light of the capabilities of these telescopes.
107 - Ivan Hubeny , Adam Burrows 2008
We show that a consistent fit to observed secondary eclipse data for several strongly irradiated transiting planets demands a temperature inversion (stratosphere) at altitude. Such a thermal inversion significantly influences the planet/star contrast ratios at the secondary eclipse,their wavelength dependences, and, importantly, the day-night flux contrast during a planetary orbit. The presence of the thermal inversion/stratosphere seems to roughly correlate with the stellar flux at the planet. Such temperature
Planet-planet scattering best explains the eccentricity distribution of extrasolar giant planets. Past literature showed that the orbits of planets evolve due to planet-planet scattering. This work studies the spin evolution of planets in planet-plan et scattering in 2-planet systems. Spin can evolve dramatically due to spin-orbit coupling made possible by the evolving spin and orbital precession during the planet-planet scattering phase. The main source of torque to planet spin is the stellar torque, and the total planet-plane torque contribution is negligible. As a consequence of the evolution of the spin, planets can end up with significant obliquity (the angle between a planets own orbit normal and spin axis) like planets in our Solar System.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا