ﻻ يوجد ملخص باللغة العربية
X-ray observations of galaxy clusters potentially provide powerful cosmological probes if systematics due to our incomplete knowledge of the intracluster medium (ICM) physics are understood and controlled. In this paper, we study the effects of galaxy formation on the properties of the ICM and X-ray observable-mass relations using high-resolution self-consistent cosmological simulations of galaxy clusters and comparing their results with recent Chandra X-ray observations. We show that despite complexities of their formation and uncertainties in their modeling, clusters of galaxies both in observations and numerical simulations are remarkably regular outside of their cores, which holds great promise for their use as cosmological probes.
X-ray observations of galaxy clusters potentially provide powerful cosmological probes if systematics due to our incomplete knowledge of the intracluster medium (ICM) physics are understood and controlled. In this paper, we present mock Chandra analy
Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich cluster
We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, whil
We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and $Y_{X}$. Three sets of simulations ar
Galaxy clusters have their unique advantages for cosmology. Here we collect a new sample of 10 lensing galaxy clusters with X-ray observations to constrain cosmological parameters.The redshifts of lensing clusters lie between 0.1 and 0.6, and the red