ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnesium isotope ratios in Hyades stars

68   0   0.0 ( 0 )
 نشر من قبل David Yong
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David Yong




اسأل ChatGPT حول البحث

Using classical model atmospheres and an LTE analysis, Mg isotope ratios 24Mg:25Mg:26Mg are measured in 32 Hyades dwarfs covering 4000K < Teff < 5000K. We find no significant trend in any isotope ratio versus Teff and the mean isotope ratio is in excellent agreement with the solar value. We determine stellar parameters and Fe abundances for 56 Hyades dwarfs covering 4000K < Teff < 6200K. For stars warmer than 4700K, we derive a cluster mean value of [Fe/H] = 0.16 +/- 0.02 (sigma=0.1), in good agreement with previous studies. For stars cooler than 4700K, we find that the abundance of Fe from ionized lines exceeds the abundance of Fe from neutral lines. At 4700K [Fe/H]_II - [Fe/H]_I = 0.3 dex while at 4000K [Fe/H]_II - [Fe/H]_I = 1.2 dex. This discrepancy between the Fe abundance from neutral and ionized lines likely reflects inadequacies in the model atmospheres and the presence of Non-LTE or other effects. Despite the inability of the models to reproduce ionization equilibrium for Fe, the Mg isotope ratios appear immune to these problems and remain a powerful tool for studying Galactic chemical evolution.



قيم البحث

اقرأ أيضاً

Previous determinations of the oxygen isotopic ratios in AGB carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in LTE with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M_o) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the FDU according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies. Excluding these peculiar stars, AGB carbon stars occupy the same region as pre-solar type I oxide grains in a 17O/16O vs. 18O/16O diagram, showing little spread. This reinforces the idea that these grains were probably formed in low-mass stars during the previous O-rich phases.
We present Mg isotope ratios in 4 red giants of the globular cluster M 13 and 1 red giant of the globular cluster M 71 based on spectra obtained with HDS on the Subaru Telescope. We confirm earlier results by Shetrone that for M 13, the ratio varies from (25+26)Mg/24Mg = 1 in stars with the highest Al abundance to (25+26)Mg/24Mg = 0.2 in stars with the lowest Al abundance. However, we separate the contributions of all three isotopes and find a spread in the ratio 24Mg:25Mg:26Mg with values ranging from 48:13:39 to 78:11:11. As in NGC 6752, we find a positive correlation between 26Mg and Al, an anticorrelation between 24Mg and Al, and no correlation between 25Mg and Al. In M 71, our one star has a ratio 70:13:17. For both clusters, the lowest ratios of 25Mg/24Mg and 26Mg/24Mg exceed those observed in field stars at the same metallicity, a result also found in NGC 6752. The contribution of 25Mg to the total Mg abundance is constant within a given cluster and between clusters with 25Mg/(24+25+26)Mg = 0.13. For M 13 and NGC 6752, the ranges of the Mg isotope ratios are similar and both clusters show the same correlations between Al and Mg isotopes suggesting that the same process is responsible for the abundance variations in these clusters. While existing models fail to reproduce all the observed abundances, we continue to favor the scenario in which two generations of AGB stars produce the observed abundances. A first generation of metal-poor AGB stars pollutes the entire cluster and is responsible for the large ratios of 25Mg/24Mg and 26Mg/24Mg observed in cluster stars with compositions identical to field stars at the same metallicity. Differing degrees of pollution by a second generation of AGB stars of the same metallicity as the cluster provides the star-to-star scatter in Mg isotope ratios.
Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical and atmospheric phenomena. Accurate evaluation of isotope ratios in atomisti c simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.
We report the relative abundances of the three stable isotopes of silicon, $^{28}$Si, $^{29}$Si and $^{30}$Si, across the Galaxy using the $v = 0, J = 1 to 0$ transition of silicon monoxide. The chosen sources represent a range in Galactocentric radi i ($R_{rm GC}$) from 0 to 9.8 kpc. The high spectral resolution and sensitivity afforded by the GBT permit isotope ratios to be corrected for optical depths. The optical-depth-corrected data indicate that the secondary-to-primary silicon isotope ratios $^{29}{rm Si}/^{28}{rm Si}$ and $^{30}{rm Si}/^{28}{rm Si}$ vary much less than predicted on the basis of other stable isotope ratio gradients across the Galaxy. Indeed, there is no detectable variation in Si isotope ratios with $R_{rm GC}$. This lack of an isotope ratio gradient stands in stark contrast to the monotonically decreasing trend with $R_{rm GC}$ exhibited by published secondary-to-primary oxygen isotope ratios. These results, when considered in the context of the expectations for chemical evolution, suggest that the reported oxygen isotope ratio trends, and perhaps that for carbon as well, require further investigation. The methods developed in this study for SiO isotopologue ratio measurements are equally applicable to Galactic oxygen, carbon and nitrogen isotope ratio measurements, and should prove useful for future observations of these isotope systems.
Stellar winds govern the spin-down of Solar-type stars as they age, and play an important role in determining planetary habitability, as powerful winds can lead to atmospheric erosion. We calculate three-dimensional stellar wind models for five young Solar-type stars in the Hyades cluster, using TOUPIES survey stellar magnetograms and state-of-the-art Alfven wave driven wind modelling. The stars have the same 0.6-Gyr age and similar fundamental parameters, and we account for the uncertainty in and underestimation of absolute field strength inherent in Zeeman-Doppler imaging by adopting both unscaled and scaled (by a factor of five) field strengths. For the unscaled fields, the resulting stellar wind mass loss is 2-4 times greater and the angular momentum loss 2-10 times greater than for the Sun today, with the scaled results correspondingly greater. We compare our results with a range published of wind models and for the Alfven wave driven modelling see evidence of mass loss saturation at about $10 dot M_odot$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا