ﻻ يوجد ملخص باللغة العربية
We consider constrained Horn clause solving from the more general point of view of solving formula equations. Constrained Horn clauses correspond to the subclass of Horn formula equations. We state and prove a fixed-point theorem for Horn formula equations which is based on expressing the fixed-point computation of a minimal model of a set of Horn clauses on the object level as a formula in first-order logic with a least fixed point operator. We describe several corollaries of this fixed-point theorem, in particular concerning the logical foundations of program verification, and sketch how to generalise it to incorporate abstract interpretations.
Poincares last geometric theorem (Poincare-Birkhoff Theorem) states that any area-preserving twist map of annulus has at least two fixed points. We replace the area-preserving condition with a weaker intersection property, which states that any essen
We obtain an extended Reich fixed point theorem for the setting of generalized cone rectangular metric spaces without assuming the normality of the underlying cone. Our work is a generalization of the main result in cite{AAB} and cite{JS}.
Implementations of artificial neural networks (ANNs) might lead to failures, which are hardly predicted in the design phase since ANNs are highly parallel and their parameters are barely interpretable. Here, we develop and evaluate a novel symbolic v
Linear fixed point equations in Hilbert spaces arise in a variety of settings, including reinforcement learning, and computational methods for solving differential and integral equations. We study methods that use a collection of random observations
We give an elementary proof of Noethers first Theorem while stressing the magical fact that the global quasi-symmetry only needs to hold for one fixed integration region. We provide sufficient conditions for gauging a global quasi-symmetry.