ترغب بنشر مسار تعليمي؟ اضغط هنا

Cyber-Attack Detection in Socio-Technical Transportation Systems Exploiting Redundancies Between Physical and Social Data

123   0   0.0 ( 0 )
 نشر من قبل Tanushree Roy
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Cyber-physical-social connectivity is a key element in Intelligent Transportation Systems (ITSs) due to the ever-increasing interaction between human users and technological systems. Such connectivity translates the ITSs into dynamical systems of socio-technical nature. Exploiting this socio-technical feature to our advantage, we propose a cyber-attack detection scheme for ITSs that focuses on cyber-attacks on freeway traffic infrastructure. The proposed scheme combines two parallel macroscopic traffic model-based Partial Differential Equation (PDE) filters whose output residuals are compared to make decision on attack occurrences. One of the filters utilizes physical (vehicle/infrastructure) sensor data as feedback whereas the other utilizes social data from human users mobile devices as feedback. The Social Data-based Filter is aided by a fake data isolator and a social signal processor that translates the social information into usable feedback signals. Mathematical convergence properties are analyzed for the filters using Lyapunovs stability theory. Lastly, we validate our proposed scheme by presenting simulation results.



قيم البحث

اقرأ أيضاً

In this paper a novel approach to co-design controller and attack detector for nonlinear cyber-physical systems affected by false data injection (FDI) attack is proposed. We augment the model predictive controller with an additional constraint requir ing the future---in some steps ahead---trajectory of the system to remain in some time-invariant neighborhood of a properly designed reference trajectory. At any sampling time, we compare the real-time trajectory of the system with the designed reference trajectory, and construct a residual. The residual is then used in a nonparametric cumulative sum (CUSUM) anomaly detector to uncover FDI attacks on input and measurement channels. The effectiveness of the proposed approach is tested with a nonlinear model regarding level control of coupled tanks.
Assuring the correct behavior of cyber-physical systems requires significant modeling effort, particularly during early stages of the engineering and design process when a system is not yet available for testing or verification of proper behavior. A primary motivation for `getting things right in these early design stages is that altering the design is significantly less costly and more effective than when hardware and software have already been developed. Engineering cyber-physical systems requires the construction of several different types of models, each representing a different view, which include stakeholder requirements, system behavior, and the system architecture. Furthermore, each of these models can be represented at different levels of abstraction. Formal reasoning has improved the precision and expanded the available types of analysis in assuring correctness of requirements, behaviors, and architectures. However, each is usually modeled in distinct formalisms and corresponding tools. Currently, this disparity means that a system designer must manually check that the different models are in agreement. Manually editing and checking models is error prone, time consuming, and sensitive to any changes in the design of the models themselves. Wiring diagrams and related theory provide a means for formally organizing these different but related modeling views, resulting in a compositional modeling language for cyber-physical systems. Such a categorical language can make concrete the relationship between different model views, thereby managing complexity, allowing hierarchical decomposition of system models, and formally proving consistency between models.
For a class of Cyber-Physical Systems (CPSs), we address the problem of performing computations over the cloud without revealing private information about the structure and operation of the system. We model CPSs as a collection of input-output dynami cal systems (the system operation modes). Depending on the mode the system is operating on, the output trajectory is generated by one of these systems in response to driving inputs. Output measurements and driving inputs are sent to the cloud for processing purposes. We capture this processing through some function (of the input-output trajectory) that we require the cloud to compute accurately - referred here as the trajectory utility. However, for privacy reasons, we would like to keep the mode private, i.e., we do not want the cloud to correctly identify what mode of the CPS produced a given trajectory. To this end, we distort trajectories before transmission and send the corrupted data to the cloud. We provide mathematical tools (based on output-regulation techniques) to properly design distorting mechanisms so that: 1) the original and distorted trajectories lead to the same utility; and the distorted data leads the cloud to misclassify the mode.
The distributed cooperative controllers for inverter-based systems rely on communication networks that make them vulnerable to cyber anomalies. In addition, the distortion effects of such anomalies may also propagate throughout inverter-based cyber-p hysical systems due to the cooperative cyber layer. In this paper, an intelligent anomaly mitigation technique for such systems is presented utilizing data driven artificial intelligence tools that employ artificial neural networks. The proposed technique is implemented in secondary voltage control of distributed cooperative control-based microgrid, and results are validated by comparison with existing distributed secondary control and real-time simulations on real-time simulator OPAL-RT.
Existing coordinated cyber-attack detection methods have low detection accuracy and efficiency and poor generalization ability due to difficulties dealing with unbalanced attack data samples, high data dimensionality, and noisy data sets. This paper proposes a model for cyber and physical data fusion using a data link for detecting attacks on a Cyber-Physical Power System (CPPS). Two-step principal component analysis (PCA) is used for classifying the systems operating status. An adaptive synthetic sampling algorithm is used to reduce the imbalance in the categories samples. The loss function is improved according to the feature intensity difference of the attack event, and an integrated classifier is established using a classification algorithm based on the cost-sensitive gradient boosting decision tree (CS-GBDT). The simulation results show that the proposed method provides higher accuracy, recall, and F-Score than comparable algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا