ﻻ يوجد ملخص باللغة العربية
Insulator-metal transition is investigated self-consistently on the frustrated Shastry-Sutherland lattice in the framework of Slave-Boson mean-field theory. Due to the presence of quasi-flat band structure characteristic, the system displays a spin-density-wave (SDW) insulating phase at the weak doping levels, which is robust against frustration, and it will be transited into an SDW metallic phase at high doping levels. As further increasing the doping, the temperature or the frustration on the diagonal linking bonds, the magnetic order $m$ will be monotonically suppressed, resulting in the appearance of a paramagnetic metallic phase. Although the Fermi surface of the SDW metallic phase may be immersed by temperature, the number of mobile charges is robust against temperature at weak doping levels.
We investigate the physical properties of the Shastry-Sutherland lattice material BaNd$_2$ZnO$_5$. Neutron diffraction, magnetic susceptibility, and specific heat measurements reveal antiferromagnetic order below 1.65 K. The magnetic order is found t
We studied the electronic structure of a Shastry-Sutherland lattice system, HoB4 employing high resolution photoemission spectroscopy and ab initio band structure calculations. The surface and bulk borons exhibit subtle differences, and loss of boron
We use the non-perturbative Contractor-Renormalization method (CORE) in order to derive an effective model for triplet excitations on the Shastry-Sutherland lattice. For strong enough magnetic fields, various magnetization plateaux are observed, e.g.
Neutron diffraction measurements were carried out on single crystals and powders of Yb2Pt2Pb, where Yb moments form planes of orthogonal dimers in the frustrated Shastry-Sutherland Lattice (SSL). Yb2Pt2Pb orders antiferromagnetically at TN=2.07 K, an
We investigate classical Heisenberg spins on the Shastry-Sutherland lattice and under an external magnetic field. A detailed study is carried out both analytically and numerically by means of classical Monte-Carlo simulations. Magnetization pseudo-pl