ترغب بنشر مسار تعليمي؟ اضغط هنا

A Sketch-Based System for Semantic Parsing

74   0   0.0 ( 0 )
 نشر من قبل Zechang Li
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents our semantic parsing system for the evaluation task of open domain semantic parsing in NLPCC 2019. Many previous works formulate semantic parsing as a sequence-to-sequence(seq2seq) problem. Instead, we treat the task as a sketch-based problem in a coarse-to-fine(coarse2fine) fashion. The sketch is a high-level structure of the logical form exclusive of low-level details such as entities and predicates. In this way, we are able to optimize each part individually. Specifically, we decompose the process into three stages: the sketch classification determines the high-level structure while the entity labeling and the matching network fill in missing details. Moreover, we adopt the seq2seq method to evaluate logical form candidates from an overall perspective. The co-occurrence relationship between predicates and entities contribute to the reranking as well. Our submitted system achieves the exactly matching accuracy of 82.53% on full test set and 47.83% on hard test subset, which is the 3rd place in NLPCC 2019 Shared Task 2. After optimizations for parameters, network structure and sampling, the accuracy reaches 84.47% on full test set and 63.08% on hard test subset(Our code and data are available at https://github.com/zechagl/NLPCC2019-Semantic-Parsing).

قيم البحث

اقرأ أيضاً

Despite the success of sequence-to-sequence (seq2seq) models in semantic parsing, recent work has shown that they fail in compositional generalization, i.e., the ability to generalize to new structures built of components observed during training. In this work, we posit that a span-based parser should lead to better compositional generalization. we propose SpanBasedSP, a parser that predicts a span tree over an input utterance, explicitly encoding how partial programs compose over spans in the input. SpanBasedSP extends Pasupat et al. (2019) to be comparable to seq2seq models by (i) training from programs, without access to gold trees, treating trees as latent variables, (ii) parsing a class of non-projective trees through an extension to standard CKY. On GeoQuery, SCAN and CLOSURE datasets, SpanBasedSP performs similarly to strong seq2seq baselines on random splits, but dramatically improves performance compared to baselines on splits that require compositional generalization: from $61.0 rightarrow 88.9$ average accuracy.
The dominant paradigm for semantic parsing in recent years is to formulate parsing as a sequence-to-sequence task, generating predictions with auto-regressive sequence decoders. In this work, we explore an alternative paradigm. We formulate semantic parsing as a dependency parsing task, applying graph-based decoding techniques developed for syntactic parsing. We compare various decoding techniques given the same pre-trained Transformer encoder on the TOP dataset, including settings where training data is limited or contains only partially-annotated examples. We find that our graph-based approach is competitive with sequence decoders on the standard setting, and offers significant improvements in data efficiency and settings where partially-annotated data is available.
We propose a large scale semantic parsing dataset focused on instruction-driven communication with an agent in Minecraft. We describe the data collection process which yields additional 35K human generated instructions with their semantic annotations . We report the performance of three baseline models and find that while a dataset of this size helps us train a usable instruction parser, it still poses interesting generalization challenges which we hope will help develop better and more robust models.
A significant amount of information in todays world is stored in structured and semi-structured knowledge bases. Efficient and simple methods to query them are essential and must not be restricted to only those who have expertise in formal query lang uages. The field of semantic parsing deals with converting natural language utterances to logical forms that can be easily executed on a knowledge base. In this survey, we examine the various components of a semantic parsing system and discuss prominent work ranging from the initial rule based methods to the current neural approaches to program synthesis. We also discuss methods that operate using varying levels of supervision and highlight the key challenges involved in the learning of such systems.
Recently, semantic parsing has attracted much attention in the community. Although many neural modeling efforts have greatly improved the performance, it still suffers from the data scarcity issue. In this paper, we propose a novel semantic parser fo r domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain. Our semantic parser benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages, i.e., focusing on domain invariant and domain specific information, respectively. In the coarse stage, our novel domain discrimination component and domain relevance attention encourage the model to learn transferable domain general structures. In the fine stage, the model is guided to concentrate on domain related details. Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies. Additionally, we show that our model can well exploit limited target data to capture the difference between the source and target domain, even when the target domain has far fewer training instances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا