ﻻ يوجد ملخص باللغة العربية
This paper presents our semantic parsing system for the evaluation task of open domain semantic parsing in NLPCC 2019. Many previous works formulate semantic parsing as a sequence-to-sequence(seq2seq) problem. Instead, we treat the task as a sketch-based problem in a coarse-to-fine(coarse2fine) fashion. The sketch is a high-level structure of the logical form exclusive of low-level details such as entities and predicates. In this way, we are able to optimize each part individually. Specifically, we decompose the process into three stages: the sketch classification determines the high-level structure while the entity labeling and the matching network fill in missing details. Moreover, we adopt the seq2seq method to evaluate logical form candidates from an overall perspective. The co-occurrence relationship between predicates and entities contribute to the reranking as well. Our submitted system achieves the exactly matching accuracy of 82.53% on full test set and 47.83% on hard test subset, which is the 3rd place in NLPCC 2019 Shared Task 2. After optimizations for parameters, network structure and sampling, the accuracy reaches 84.47% on full test set and 63.08% on hard test subset(Our code and data are available at https://github.com/zechagl/NLPCC2019-Semantic-Parsing).
Despite the success of sequence-to-sequence (seq2seq) models in semantic parsing, recent work has shown that they fail in compositional generalization, i.e., the ability to generalize to new structures built of components observed during training. In
The dominant paradigm for semantic parsing in recent years is to formulate parsing as a sequence-to-sequence task, generating predictions with auto-regressive sequence decoders. In this work, we explore an alternative paradigm. We formulate semantic
We propose a large scale semantic parsing dataset focused on instruction-driven communication with an agent in Minecraft. We describe the data collection process which yields additional 35K human generated instructions with their semantic annotations
A significant amount of information in todays world is stored in structured and semi-structured knowledge bases. Efficient and simple methods to query them are essential and must not be restricted to only those who have expertise in formal query lang
Recently, semantic parsing has attracted much attention in the community. Although many neural modeling efforts have greatly improved the performance, it still suffers from the data scarcity issue. In this paper, we propose a novel semantic parser fo