ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixed aggregated finite element methods for the unfitted discretization of the Stokes problem

146   0   0.0 ( 0 )
 نشر من قبل Santiago Badia Sb
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we consider unfitted finite element methods for the numerical approximation of the Stokes problem. It is well-known that this kind of methods lead to arbitrarily ill-conditioned systems. In order to solve this issue, we consider the recently proposed aggregated finite element method, originally motivated for coercive problems. However, the well-posedness of the Stokes problem is far more subtle and relies on a discrete inf-sup condition. We consider mixed finite element methods that satisfy the discrete version of the inf-sup condition for body-fitted meshes, and analyze how the discrete inf-sup is affected when considering the unfitted case. We propose different aggregated mixed finite element spaces combined with simple stabilization terms, which can include pressure jumps and/or cell residuals, to fix the potential deficiencies of the aggregated inf-sup. We carry out a complete numerical analysis, which includes stability, optimal a priori error estimates, and condition number bounds that are not affected by the small cut cell problem. For the sake of conciseness, we have restricted the analysis to hexahedral meshes and discontinuous pressure spaces. A thorough numerical experimentation bears out the numerical analysis. The aggregated mixed finite element method is ultimately applied to two problems with non-trivial geometries.



قيم البحث

اقرأ أيضاً

In this work, we present an adaptive unfitted finite element scheme that combines the aggregated finite element method with parallel adaptive mesh refinement. We introduce a novel scalable distributed-memory implementation of the resulting scheme on locally-adapted Cartesian forest-of-trees meshes. We propose a two-step algorithm to construct the finite element space at hand by means of a discrete extension operator that carefully mixes aggregation constraints of problematic degrees of freedom, which get rid of the small cut cell problem, and standard hanging degree of freedom constraints, which ensure trace continuity on non-conforming meshes. Following this approach, we derive a finite element space that can be expressed as the original one plus well-defined linear constraints. Moreover, it requires minimum parallelization effort, using standard functionality available in existing large-scale finite element codes. Numerical experiments demonstrate its optimal mesh adaptation capability, robustness to cut location and parallel efficiency, on classical Poisson $hp$-adaptivity benchmarks. Our work opens the path to functional and geometrical error-driven dynamic mesh adaptation with the aggregated finite element method in large-scale realistic scenarios. Likewise, it can offer guidance for bridging other scalable unfitted methods and parallel adaptive mesh refinement.
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterat ive Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.
In this work, we analyse the links between ghost penalty stabilisation and aggregation-based discrete extension operators for the numerical approximation of elliptic partial differential equations on unfitted meshes. We explore the behavior of ghost penalty methods in the limit as the penalty parameter goes to infinity, which returns a strong version of these methods. We observe that these methods suffer locking in that limit. On the contrary, aggregated finite element spaces are locking-free because they can be expressed as an extension operator from well-posed to ill-posed degrees of freedom. Next, we propose novel ghost penalty methods that penalise the distance between the solution and its aggregation-based discrete extension. These methods are locking-free and converge to aggregated finite element methods in the infinite penalty parameter limit. We include an exhaustive set of numerical experiments in which we compare weak (ghost penalty) and strong (aggregated finite elements) schemes in terms of error quantities, condition numbers and sensitivity with respect to penalty coefficients on different geometries, intersection locations and mesh topologies.
Unfitted finite element methods, e.g., extended finite element techniques or the so-called finite cell method, have a great potential for large scale simulations, since they avoid the generation of body-fitted meshes and the use of graph partitioning techniques, two main bottlenecks for problems with non-trivial geometries. However, the linear systems that arise from these discretizations can be much more ill-conditioned, due to the so-called small cut cell problem. The state-of-the-art approach is to rely on sparse direct methods, which have quadratic complexity and are thus not well suited for large scale simulations. In order to solve this situation, in this work we investigate the use of domain decomposition preconditioners (balancing domain decomposition by constraints) for unfitted methods. We observe that a straightforward application of these preconditioners to the unfitted case has a very poor behavior. As a result, we propose a {customization} of the classical BDDC methods based on the stiffness weighting operator and an improved definition of the coarse degrees of freedom in the definition of the preconditioner. These changes lead to a robust and algorithmically scalable solver able to deal with unfitted grids. A complete set of complex 3D numerical experiments show the good performance of the proposed preconditioners.
The aggregated unfitted finite element method (AgFEM) is a methodology recently introduced in order to address conditioning and stability problems associated with embedded, unfitted, or extended finite element methods. The method is based on removal of basis functions associated with badly cut cells by introducing carefully designed constraints, which results in well-posed systems of linear algebraic equations, while preserving the optimal approximation order of the underlying finite element spaces. The specific goal of this work is to present the implementation and performance of the method on distributed-memory platforms aiming at the efficient solution of large-scale problems. In particular, we show that, by considering AgFEM, the resulting systems of linear algebraic equations can be effectively solved using standard algebraic multigrid preconditioners. This is in contrast with previous works that consider highly customized preconditioners in order to allow one the usage of iterative solvers in combination with unfitted techniques. Another novelty with respect to the methods available in the literature is the problem sizes that can be handled with the proposed approach. While most of previous references discussing linear solvers for unfitted methods are based on serial non-scalable algorithms, we propose a parallel distributed-memory method able to efficiently solve problems at large scales. This is demonstrated by means of a weak scaling test defined on complex 3D domains up to 300M degrees of freedom and one billion cells on 16K CPU cores in the Marenostrum-IV platform. The parallel implementation of the AgFEM method is available in the large-scale finite element package FEMPAR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا