ترغب بنشر مسار تعليمي؟ اضغط هنا

Formal Modeling and Analysis of Pancreatic Cancer Microenvironment

313   0   0.0 ( 0 )
 نشر من قبل Qinsi Wang
 تاريخ النشر 2016
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The focus of pancreatic cancer research has been shifted from pancreatic cancer cells towards their microenvironment, involving pancreatic stellate cells that interact with cancer cells and influence tumor progression. To quantitatively understand the pancreatic cancer microenvironment, we construct a computational model for intracellular signaling networks of cancer cells and stellate cells as well as their intercellular communication. We extend the rule-based BioNetGen language to depict intra- and inter-cellular dynamics using discrete and continuous variables respectively. Our framework also enables a statistical model checking procedure for analyzing the system behavior in response to various perturbations. The results demonstrate the predictive power of our model by identifying important system properties that are consistent with existing experimental observations. We also obtain interesting insights into the development of novel therapeutic strategies for pancreatic cancer.



قيم البحث

اقرأ أيضاً

Prediction of Overall Survival (OS) of brain cancer patients from multi-modal MRI is a challenging field of research. Most of the existing literature on survival prediction is based on Radiomic features, which does not consider either non-biological factors or the functional neurological status of the patient(s). Besides, the selection of an appropriate cut-off for survival and the presence of censored data create further problems. Application of deep learning models for OS prediction is also limited due to the lack of large annotated publicly available datasets. In this scenario we analyse the potential of two novel neuroimaging feature families, extracted from brain parcellation atlases and spatial habitats, along with classical radiomic and geometric features; to study their combined predictive power for analysing overall survival. A cross validation strategy with grid search is proposed to simultaneously select and evaluate the most predictive feature subset based on its predictive power. A Cox Proportional Hazard (CoxPH) model is employed for univariate feature selection, followed by the prediction of patient-specific survival functions by three multivariate parsimonious models viz. Coxnet, Random survival forests (RSF) and Survival SVM (SSVM). The brain cancer MRI data used for this research was taken from two open-access collections TCGA-GBM and TCGA-LGG available from The Cancer Imaging Archive (TCIA). Corresponding survival data for each patient was downloaded from The Cancer Genome Atlas (TCGA). A high cross validation $C-index$ score of $0.82pm.10$ was achieved using RSF with the best $24$ selected features. Age was found to be the most important biological predictor. There were $9$, $6$, $6$ and $2$ features selected from the parcellation, habitat, radiomic and region-based feature groups respectively.
To enable personalized cancer treatment, machine learning models have been developed to predict drug response as a function of tumor and drug features. However, most algorithm development efforts have relied on cross validation within a single study to assess model accuracy. While an essential first step, cross validation within a biological data set typically provides an overly optimistic estimate of the prediction performance on independent test sets. To provide a more rigorous assessment of model generalizability between different studies, we use machine learning to analyze five publicly available cell line-based data sets: NCI60, CTRP, GDSC, CCLE and gCSI. Based on observed experimental variability across studies, we explore estimates of prediction upper bounds. We report performance results of a variety of machine learning models, with a multitasking deep neural network achieving the best cross-study generalizability. By multiple measures, models trained on CTRP yield the most accurate predictions on the remaining testing data, and gCSI is the most predictable among the cell line data sets included in this study. With these experiments and further simulations on partial data, two lessons emerge: (1) differences in viability assays can limit model generalizability across studies, and (2) drug diversity, more than tumor diversity, is crucial for raising model generalizability in preclinical screening.
Central nervous system (CNS) tumors come with the vastly heterogeneous histologic, molecular and radiographic landscape, rendering their precise characterization challenging. The rapidly growing fields of biophysical modeling and radiomics have shown promise in better characterizing the molecular, spatial, and temporal heterogeneity of tumors. Integrative analysis of CNS tumors, including clinically-acquired multi-parametric magnetic resonance imaging (mpMRI) and the inverse problem of calibrating biophysical models to mpMRI data, assists in identifying macroscopic quantifiable tumor patterns of invasion and proliferation, potentially leading to improved (i) detection/segmentation of tumor sub-regions, and (ii) computer-aided diagnostic/prognostic/predictive modeling. This paper presents a summary of (i) biophysical growth modeling and simulation, (ii) inverse problems for model calibration, (iii) their integration with imaging workflows, and (iv) their application on clinically-relevant studies. We anticipate that such quantitative integrative analysis may even be beneficial in a future revision of the World Health Organization (WHO) classification for CNS tumors, ultimately improving patient survival prospects.
Cox proportional hazard model (CPH) is commonly used in clinical research for survival analysis. In quantitative medical imaging (radiomics) studies, CPH plays an important role in feature reduction and modeling. However, the underlying linear assump tion of CPH model limits the prognostic performance. In addition, the multicollinearity of radiomic features and multiple testing problem further impedes the CPH models performance. In this work, using transfer learning, a convolutional neural network (CNN) based survival model was built and tested on preoperative CT images of resectable Pancreatic Ductal Adenocarcinoma (PDAC) patients. The proposed CNN-based survival model outperformed the traditional CPH-based radiomics approach in terms of concordance index by 22%, providing a better fit for patients survival patterns. The proposed CNN-based survival model outperforms CPH-based radiomics pipeline in PDAC prognosis. This approach offers a better fit for survival patterns based on CT images and overcomes the limitations of conventional survival models.
Multiple myeloma is a plasma cell cancer that leads to a dysregulated bone remodeling process. We present a partial differential equation model describing the dynamics of bone remodeling with the presence of myeloma tumor cells. The model explicitly takes into account the roles of osteoclasts, osteoblasts, precursor cells, stromal cells, osteocytes, and tumor cells. Previous models based on ordinary differential equations make the simplifying assumption that the bone and tumor cells are adjacent to each other. However, in actuality, these cell populations are separated by the bone marrow. Our model takes this separation into account by including the diffusion of chemical factors across the marrow, which can be viewed as communication between the tumor and bone. Additionally, this model incorporates the growth of the tumor and the diminishing bone mass by utilizing a ``moving boundary. We present numerical simulations that qualitatively validate our models description of the cell population dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا