ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse field muon-spin rotation measurement of the topological anomaly in a thin film of MnSi

347   0   0.0 ( 0 )
 نشر من قبل Tom Lancaster
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of transverse-field muon-spin rotation measurements on an epitaxially grown 40 nm-thick film of MnSi on Si(111) in the region of the field-temperature phase diagram where a skyrmion phase has been observed in the bulk. We identify changes in the quasistatic magnetic field distribution sampled by the muon, along with evidence for magnetic transitions around $Tapprox 40$ K and 30 K. Our results suggest that the cone phase is not the only magnetic texture realized in film samples for out-of-plane fields.

قيم البحث

اقرأ أيضاً

We present the results of transverse field (TF) muon-spin rotation (muSR) measurements on Cu2OSeO3, which has a skyrmion lattice (SL) phase. We measure the response of the TF muSR signal in that phase along with the surrounding ones, and suggest how the phases might be distinguished using the results of these measurements. Dipole field simulations support the conclusion that the muon is sensitive to the SL via the TF lineshape and, based on this interpretation, our measurements suggest that the SL is quasistatic on a timescale tau > 100 ns.
Muon spin rotation (muSR) spectra recorded for manganese silicide MnSi and interpreted in terms of a quantitative analysis constrained by symmetry arguments were recently published. The magnetic structures of MnSi in zero-field at low temperature and in the conical phase near the magnetic phase transition were shown to substantially deviate from the expected helical and conical structures. Here, we present material backing the previous results obtained in zero-field. First, from simulations of the field distributions experienced by the muons as a function of relevant parameters we confirm the uniqueness of the initial interpretation and illustrate the remarkable complementarity of neutron scattering and muSR for the MnSi magnetic structure determination. Second we present the result of a muSR experiment performed on MnSi crystallites grown in a Zn-flux and compare it with the previous data recorded with a crystal obtained from Czochralski pulling. We find the magnetic structure for the two types of crystals to be identical within experimental uncertainties. We finally address the question of a possible muon-induced effect by presenting transverse field muSR spectra recorded in a wide range of temperature and field intensity. The field distribution parameters perfectly scale with the macroscopic magnetization, ruling out a muon-induced effect.
Adsorbed molecular films provide two-dimensional systems that show various emergent phenomena that are not observed in bulk counterparts. We have measured the elasticity of thin neon films adsorbed on porous glass down to 1 K by the torsional oscilla tor technique. The shear modulus of a neon film anomalously increases at low temperatures with excess dissipation. This behavior indicates a crossover from a soft (fluidlike) state at high temperatures to a stiff (solidlike) state at low temperatures. The temperature dependence of the anomaly is qualitatively similar to that of the elastic anomaly of helium films found in our recent study. The dissipation peak temperature, however, becomes constant at about 5 K, contrary to the case of helium, in which it decreases to 0 K at a critical coverage of a quantum phase transition between a gapped localized phase and a mobile (superfluid) phase. It is concluded that neon films behave as a classical system that does not show a quantum phase transition or superfluidity, although the films may be strongly supercooled to temperatures much lower than the bulk triple point, 24.6 K. Our results suggest that the elastic anomaly is a universal phenomenon of atomic or molecular films adsorbed on disordered substrates.
Transverse-field muon spin rotation measurements of overdoped La2-xSrxCuO4 reveal a large broadening of the local magnetic field distribution in response to applied field, persisting to high temperatures. The field-response is approximately Curie-Wei ss like in temperature and is largest for the highest doping investigated. Such behaviour is contrary to the canonical Fermi-liquid picture commonly associated with the overdoped cuprates and implies extensive heterogeneity in this region of the phase diagram. A possible explanation for the result lies in regions of staggered magnetization about dopant cations, analogous to what is argued to exist in underdoped systems.
Recent small angle neutron scattering suggests, that the spin structure in the A-phase of MnSi is a so-called triple-$Q$ state, i.e., a superposition of three helices under 120 degrees. Model calculations suggest that this structure in fact is a latt ice of so-called skyrmions, i.e., a lattice of topologically stable knots in the spin structure. We report a distinct additional contribution to the Hall effect in the temperature and magnetic field range of the proposed skyrmion lattice, where such a contribution is neither seen nor expected for a normal helical state. Our Hall effect measurements constitute a direct observation of a topologically quantized Berry phase that identifies the spin structure seen in neutron scattering as the proposed skyrmion lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا