ﻻ يوجد ملخص باللغة العربية
The speed of growth for a particular stochastic growth model introduced by Borodin and Ferrari in [Comm. Math. Phys. 325 (2014), 603-684], which belongs to the KPZ anisotropic universality class, was computed using multi-time correlations. The model was recently generalized by Toninelli in [arXiv:1503.05339] and for this generalization the stationary measure is known but the time correlations are unknown. In this note, we obtain algebraic and combinatorial proofs for the expression of the speed of growth from the prescribed dynamics.
We consider some models in the Kardar-Parisi-Zhang universality class, namely the polynuclear growth model and the totally/partially asymmetric simple exclusion process. For these models, in the limit of large time t, universality of fluctuations has
Electronic transport through chaotic quantum dots exhibits universal behaviour which can be understood through the semiclassical approximation. Within the approximation, transport moments reduce to codifying classical correlations between scattering
To study electronic transport through chaotic quantum dots, there are two main theoretical approachs. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the tra
We consider properties of the operators D(r,M)=a^r(a^dag a)^M (which we call generalized Laguerre-type derivatives), with r=1,2,..., M=0,1,..., where a and a^dag are boson annihilation and creation operators respectively, satisfying [a,a^dag]=1. We o
Several combinatorial problems of (quasi-)crystallography are reviewed with special emphasis on a unified approach, valid for both crystals and quasicrystals. In particular, we consider planar sublattices, similarity sublattices, coincidence sublatti