ترغب بنشر مسار تعليمي؟ اضغط هنا

Virtual gravitational dipoles: The key for the understanding of the Universe?

365   0   0.0 ( 0 )
 نشر من قبل Dragan Hajdukovic
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Before the end of this decade, three competing experiments (ALPHA, AEGIS and GBAR) will discover if atoms of antihydrogen fall up or down. We wonder what the major changes in astrophysics and cosmology would be if it is experimentally confirmed that antimatter falls upwards. The key point is: If antiparticles have negative gravitational charge, the quantum vacuum, well established in the Standard Model of Particles and Fields, contains virtual gravitational dipoles. The main conclusions are: (1) the physical vacuum enriched with gravitational dipoles is compatible with a cyclic universe alternatively dominated by matter and antimatter, without initial singularity and without need for cosmic inflation; (2) the virtual dipoles might explain the phenomena usually attributed to dark matter and dark energy. While what we have presented is still far from a complete theory, hopefully it can stimulate a radically different and potentially important way of thinking.

قيم البحث

اقرأ أيضاً

The cosmological constant problem is the principal obstacle in the attempt to interpret dark energy as the quantum vacuum energy. We suggest that the obstacle can be removed, i.e. that the cosmological constant problem can be resolved by assuming tha t the virtual particles and antiparticles in the quantum vacuum have the gravitational charge of the opposite sign. The corresponding estimates of the cosmological constant, dark energy density and the equation of state for dark energy are in the intriguing agreement with the observed values in the present day Universe. However, our approach and the Standard Cosmology lead to very different predictions for the future of the Universe; the exponential growth of the scale factor, predicted by the Standard Cosmology, is suppressed in our model.
This document is the Special Issue of the First International Conference on the Evolution and Development of the Universe (EDU 2008). Please refer to the preface and introduction for more details on the contributions. Keywords: acceleration, artifi cial cosmogenesis, artificial life, Big Bang, Big History, biological evolution, biological universe, biology, causality, classical vacuum energy, complex systems, complexity, computational universe, conscious evolution, cosmological artificial selection, cosmological natural selection, cosmology, critique, cultural evolution, dark energy, dark matter, development of the universe, development, emergence, evolution of the universe evolution, exobiology, extinction, fine-tuning, fractal space-time, fractal, information, initial conditions, intentional evolution, linear expansion of the universe, log-periodic laws, macroevolution, materialism, meduso-anthropic principle, multiple worlds, natural sciences, Nature, ontology, order, origin of the universe, particle hierarchy, philosophy, physical constants, quantum darwinism, reduction, role of intelligent life, scale relativity, scientific evolution, self-organization, speciation, specification hierarchy, thermodynamics, time, universe, vagueness.
An analysis of Deeply Virtual Compton Scattering (DVCS) is made within the colour dipole model. We compare and contrast two models for the dipole cross-section which have been successful in describing structure function data. Both models agree with t he available cross section data on DVCS from HERA. We give predictions for various azimuthal angle asymmetries in HERA kinematics and for the DVCS cross section in the THERA region.
In this paper, we perform the polar analysis of the spinorial fields, starting from the regular cases and up to the singular cases: we will give for the first time the polar form of the spinorial field equations for the singular cases constituted by the flag-dipole spinor fields. Comments on the role of further spinor sub-classes containing Majorana and Weyl spinors will be sketched.
86 - Enrique Gaztanaga 2020
A Universe with finite age also has a finite causal scale. Larger scales can not affect our local measurements or modeling, but far away locations could have different cosmological parameters. The size of our causal Universe depends on the details of inflation and is usually assumed to be larger than our observable Universe today. To account for causality, we propose a new boundary condition, that can be fulfill by fixing the cosmological constant (a free geometric parameter of gravity). This forces a cancellation of vacuum energy with the cosmological constant. As a consequence, the measured cosmic acceleration can not be explained by a simple cosmological constant or constant vacuum energy. We need some additional odd properties such as the existence of evolving dark energy (DE) with energy-density fine tuned to be twice that of dark matter today. We show here that we can instead explain cosmic acceleration without DE (or modified gravity) assuming that the causal scale is smaller than the observable Universe today. Such scale corresponds to half the sky at z=1 and 60 degrees at z=1100, which is consistent with the anomalous lack of correlations observed in the CMB. Late time cosmic acceleration could then be interpreted as the smoking gun of primordial Inflation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا