ﻻ يوجد ملخص باللغة العربية
We report markedly different transport properties of ABA- and ABC-stacked trilayer graphenes. Our experiments in double-gated trilayer devices provide evidence that a perpendicular electric field opens an energy gap in the ABC trilayer, while it causes the increase of a band overlap in the ABA trilayer. In a perpendicular magnetic field, the ABA trilayer develops quantum Hall plateaus at filling factors of u = 2, 4, 6... with a step of Delta u = 2, whereas the inversion symmetric ABC trilayer exhibits plateaus at u = 6 and 10 with 4-fold spin and valley degeneracy.
In a multi-layer electronic system, stacking order provides a rarely-explored degree of freedom for tuning its electronic properties. Here we demonstrate the dramatically different transport properties in trilayer graphene (TLG) with different stacki
We construct a continuum model of twisted trilayer graphene using {it ab initio} density-functional-theory calculations, and apply it to address twisted trilayer electronic structure. Our model accounts for moire variation in site energies, hopping b
The growth, atomic structure, and electronic property of trilayer graphene (TLG) on Ru(0001) were studied by low temperature scanning tunneling microscopy and spectroscopy in combined with tight-binding approximation (TBA) calculations. TLG on Ru(000
Multilayered van der Waals structures often lack periodicity, which difficults their modeling. Building on previous work for bilayers, we develop a tight-binding based, momentum space formalism capable of describing incommensurate multilayered van de
We present a fabrication process for high quality suspended and double gated trilayer graphene devices. The electrical transport measurements in these transistors reveal a high charge carrier mobility (higher than 20000 cm^2/Vs) and ballistic electri