ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the Temperature of Hot Nuclear Fragments

108   0   0.0 ( 0 )
 نشر من قبل Bonasera
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new thermometer based on fragment momentum fluctuations is presented. This thermometer exhibited residual contamination from the collective motion of the fragments along the beam axis. For this reason, the transverse direction has been explored. Additionally, a mass dependence was observed for this thermometer. This mass dependence may be the result of the Fermi momentum of nucleons or the different properties of the fragments (binding energy, spin etc..) which might be more sensitive to different densities and temperatures of the exploding fragments. We expect some of these aspects to be smaller for protons (and/or neutrons); consequently, the proton transverse momentum fluctuations were used to investigate the temperature dependence of the source.



قيم البحث

اقرأ أيضاً

150 - B. Borderie 2008
This review article is focused on the tremendous progress realized during the last fifteen years in the understanding of multifragmentation and its relationship to the liquid-gas phase diagram of nuclei and nuclear matter. The explosion of the whole nucleus, early predicted by Bohr [N. Bohr, Nature 137 (1936) 351], is a very complex and rich subject which continues to fascinate nuclear physicists as well as theoreticians who extend the thermodynamics of phase transitions to finite systems.
279 - X. Liu , W. Lin , R. Wada 2014
Symmetry energy, temperature and density at the time of the intermediate mass fragment formation are determined in a self-consistent manner, using the experimentally reconstructed primary hot isotope yields and anti-symmetrized molecular dynamics (AM D) simulations. The yields of primary hot fragments are experimentally reconstructed for multifragmentation events in the reaction system $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon. Using the reconstructed hot isotope yields and an improved method, based on the modified Fisher model, symmetry energy values relative to the apparent temperature, $a_{sym}/T$, are extracted. The extracted values are compared with those of the AMD simulations, extracted in the same way as that for the experiment, with the Gogny interaction with three different density-dependent symmetry energy terms. $a_{sym}/T$ values change according to the density-dependent symmetry energy terms used. Using this relation, the density of the fragmenting system is extracted first. Then symmetry energy and apparent temperature are determined in a self consistent manner in the AMD model simulations. Comparing the calculated $a_{sym}/T$ values and those of the experimental values from the reconstructed yields, $rho /rho_{0} = 0.65 pm 0.02 $, $a_{sym} = 23.1 pm 0.6$ MeV and $T= 5.0 pm 0.4$ MeV are evaluated for the fragmenting system experimentally observed in the reaction studied.
79 - Y.B. Wei , Y. G. Ma , X. Z. Cai 2004
Distribution of the parallel momentum of $^{28}$Si fragments from the breakup of 30.7 MeV/nucleon $^{29}$P has been measured on C targets. The distribution has the FWHM with the value of 110.5 $pm$ 23.5 MeV/c which is consistent quantitatively with G aluber model calculation assuming by a valence proton in $^{29}$P. The density distribution is also predicted by Skyrme-Hartree-Fock calculation. Results show that there might exist the proton-skin structure in $^{29}$P.
The isotope yields of fragments, produced in the decay of the quasiprojectile in Au+Au peripheral collisions at 35 MeV/nucleon and those coming from the disassembly of the unique source formed in Xe+Cu central reactions at 30 MeV/nucleon, were measur ed. We show that the relative yields of neutron-rich isotopes increase with the excitation energy in multifragmentation reaction. In the framework of the statistical multifragmentation model which fairly well reproduces the experimental observables, this behaviour can be explained by increasing N/Z ratio of hot primary fragments, that corresponds to the statistical evolution of the decay mechanism with the excitation energy: from a compound-like decay to complete multifragmentation.
Yields of equatorially emitted light isotopes, $1le Zle 14$, observed in ternary fission in the reaction $^{241}$Pu($n_{rm th}$,f) are employed to determine apparent chemical equilibrium constants for low-temperature and low-density nuclear matter. T he degree of liberation and role of medium modifications are probed through a comparison of experimentally derived reaction quotients with equilibrium constants calculated using a relativistic mean-field model employing a universal medium modification correction for the attractive $sigma$ meson coupling. The results of these comparisons indicate that equilibrium is achieved for the lighter ternary fission isotopes. For the heavier isotopes experimental reaction quotients are well below calculated equilibrium constants. This is attributed to a dynamical limitation reflecting insufficient time for full equilibrium to develop. The role of medium effects leading to yield reductions is discussed as is the apparent enhancement of yields for $^8$He and other very neutron rich exotic nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا