ﻻ يوجد ملخص باللغة العربية
MAGIC comprises two 17m diameter IACTs to be operated in stereo mode. Currently we are commissioning the second telescope, MAGIC II. The camera of the second telescope has been equipped with 1039 pixels of 0.1-degree diameter. Always seven pixels are grouped in a hexagonal configuration to form a cluster. This modular design allows easier control and maintenance of the camera. The pixel sensors are high quantum efficiency photomultiplier tubes (PMTs) from Hamamatsu (superbialkali type, QE ~ 32% at the peak wavelength) that we operate at rather low gain of 30 k. This allows us to also perform extended observations under moderate moonlight. The system of two MAGIC telescopes will at least double the sensitivity compared to MAGIC I and also will allow us to lower the energy threshold.Here we will report the performances of the Camera of the second MAGIC telescope.
The MAGIC 17m diameter Cherenkov telescope will be upgraded with a second telescope within the year 2007. The camera of MAGIC-II will include several new features compared to the MAGIC-I camera. Photomultipliers with the highest available photon coll
The Large-Sized Telescope (LST) prototype of the future Cherenkov Telescope Array (CTA) is located at the Northern site of CTA, on the Canary Island of La Palma. It is designed to provide optimal performance in the lowest part of the energy range cov
Baikal-GVD is a km$^3$-scale neutrino telescope being constructed in Lake Baikal. Muon and partially tau (anti)neutrino interactions near the detector through the W$^{pm}$-boson exchange are accompanied by muon tracks. Reconstructed direction of the
In this contribution we describe the hardware, firmware and software components of the readout system of the MAGIC-II Cherenkov telescope on the Canary island La Palma. The PMT analog signals are transmitted by means of optical fibers from the MAGIC-
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes sensitive above ~60 GeV, and located on the Canary Island of La Palma at the height of 2200 m.a.s.l. Since Autumn 2009 both telescopes are working together in stereoscopic mode. We use