ﻻ يوجد ملخص باللغة العربية
Embedded computing systems today increasingly feature resource constraints and workload variability, which lead to uncertainty in resource availability. This raises great challenges to software design and programming in multitasking environments. In this paper, the emerging methodology of feedback scheduling is introduced to address these challenges. As a closed-loop approach to resource management, feedback scheduling promises to enhance the flexibility and resource efficiency of various software programs through dynamically distributing available resources among concurrent tasks based on feedback information about the actual usage of the resources. With emphasis on the behavioral design of feedback schedulers, we describe a general framework of feedback scheduling in the context of real-time control applications. A simple yet illustrative feedback scheduling algorithm is given. From a programming perspective, we describe how to modify the implementation of control tasks to facilitate the application of feedback scheduling. An event-driven paradigm that combines time-triggered and event-triggered approaches is proposed for programming of the feedback scheduler. Simulation results argue that the proposed event-driven paradigm yields better performance than time-triggered paradigm in dynamic environments where the workload varies irregularly and unpredictably.
Due to the increasing complexity seen in both workloads and hardware resources in state-of-the-art embedded systems, developing efficient real-time schedulers and the corresponding schedulability tests becomes rather challenging. Although close to op
With traditional open-loop scheduling of network resources, the quality-of-control (QoC) of networked control systems (NCSs) may degrade significantly in the presence of limited bandwidth and variable workload. The goal of this work is to maximize th
In this ongoing work, we are interested in multiprocessor energy efficient systems, where task durations are not known in advance, but are know stochastically. More precisely, we consider global scheduling algorithms for frame-based multiprocessor st
When integrating hard, soft and non-real-time tasks in general purpose operating systems, it is necessary to provide temporal isolation so that the timing properties of one task do not depend on the behaviour of the others. However, strict budget enf
Myopic is a hard real-time process scheduling algorithm that selects a suitable process based on a heuristic function from a subset (Window)of all ready processes instead of choosing from all available processes, like original heuristic scheduling al