ترغب بنشر مسار تعليمي؟ اضغط هنا

Rich methane laminar flames doped with light unsaturated hydrocarbons. Part III : cyclopentene

59   0   0.0 ( 0 )
 نشر من قبل Denise Hagnier
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hadj-Ali Gueniche




اسأل ChatGPT حول البحث

In line with the studies presented in the parts I and II of this paper, the structure of a laminar rich premixed methane flame doped with cyclopentene has been investigated. The gases of this flame contains 15.3% (molar) of methane, 26.7% of oxygen and 2.4% cyclopentene corresponding to an equivalence ratio of 1.79 and a ratio C5H8 / CH4 of 16 %. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 36 cm/s at 333 K. The temperature ranged from 627 K close to the burner up to 2027 K. Quantified species included usual methane C0-C2 combustion products, but also propyne, allene, propene, propane, 1-butene, 1,3-butadiene, 1,2-butadiene, vinylacetylene, diacetylene, cyclopentadiene, 1,3-pentadiene, benzene and toluene. A new mechanism for the oxidation of cyclopentene has been proposed. The main reaction pathways of consumption of cyclopentene and of formation of benzene and toluene have been derived from flow rate analyses.

قيم البحث

اقرأ أيضاً

In line with the study presented in the part I of this paper, the structure of a laminar rich premixed methane flame doped with 1,3-butadiene has been investigated. The flame contains 20.7% (molar) of methane, 31.4% of oxygen and 3.3% of 1,3-butadien e, corresponding to an equivalence ratio of 1.8, and a ratio C4H6 / CH4 of 16 %. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 36 cm/s at 333 K. The temperature ranged from 600 K close to the burner up to 2150 K. Quantified species included usual methane C0-C2 combustion products and 1,3-butadiene, but also propyne, allene, propene, propane, 1,2-butadiene, butynes, vinylacetylene, diacetylene, 1,3-pentadiene, 2-methyl-1,3-butadiene (isoprene), 1-pentene, 3-methyl-1-butene, benzene and toluene. In order to model these new results, some improvements have been made to a mechanism previously developed in our laboratory for the reactions of C3-C4 unsaturated hydrocarbons. The main reaction pathways of consumption of 1,3-butadiene and of formation of C6 aromatic species have been derived from flow rate analyses. In this case, the C4 route to benzene formation plays an important role in comparison to the C3 pathway.
145 - S. Pilling 2012
The formation of double and triple C-C bonds from the processing of pure c-C6H12 (cyclohexane) and mixed H2O:NH3:c-C6H12 (1:0.3:0.7) ices by highly-charged, and energetic ions (219 MeV O^{7+} and 632 MeV Ni^{24+}) is studied. The experiments simulate the physical chemistry induced by medium-mass and heavy-ion cosmic rays in interstellar ices analogs. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accelerateur National dIons Lourds) in Caen, France. The gas samples were deposited onto a polished CsI substrate previously cooled to 13 K. In-situ analysis was performed by a Fourier transform infrared (FTIR) spectrometry at different ion fluences. Dissociation cross section of cyclohexane and its half-life in astrophysical environments were determined. A comparison between spectra of bombarded ices and young stellar sources indicates that the initial composition of grains in theses environments should contain a mixture of H2O, NH3, CO (or CO2), simple alkanes, and CH3OH. Several species containing double or triple bounds were identified in the radiochemical products, such as hexene, cyclohexene, benzene, OCN-, CO, CO2, as well as several aliphatic and aromatic alkenes and alkynes. The results suggest an alternative scenario for the production of unsaturated hydrocarbons and possibly aromatic rings (via dehydrogenation processes) in interstellar ices induced by cosmic ray bombardment.
The predictive simulation of molecular liquids requires models that are not only accurate, but computationally efficient enough to handle the large systems and long time scales required for reliable prediction of macroscopic properties. We present a new approach to the systematic approximation of the first-principles potential energy surface (PES) of molecular liquids using the GAP (Gaussian Approximation Potential) framework. The approach allows us to create potentials at several different levels of accuracy in reproducing the true PES, which allows us to test the level of quantum chemistry that is necessary to accurately predict its macroscopic properties. We test the approach by building potentials for liquid methane (CH$_4$), which is difficult to model from first principles because its behavior is dominated by weak dispersion interactions with a significant many-body component. We find that an accurate, consistent prediction of its bulk density across a wide range of temperature and pressure requires not only many-body dispersion, but also quantum nuclear effects to be modeled accurately.
While powerful techniques exist to accurately account for anharmonicity in vibrational molecular spectroscopy, they are computationally very expensive and cannot be routinely employed for large species and/or at non- zero vibrational temperatures. Mo tivated by the study of Polycyclic Aromatic Hydrocarbon (PAH) emission in space, we developed a new code, which takes into account all modes and can describe all IR transitions including bands becoming active due to resonances as well as overtones, combination and difference bands. In this article, we describe the methodology that was implemented and discuss how the main difficulties were overcome, so as to keep the problem tractable. Benchmarking with high-level calculations was performed on a small molecule. We carried out specific convergence tests on two prototypical PAHs, pyrene (C$_{16}$H$_{10}$) and coronene (C$_{24}$H$_{12}$), aiming at optimising tunable parameters to achieve both acceptable accuracy and computational costs for this class of molecules. We then report the results obtained at 0 K for pyrene and coronene, comparing the calculated spectra with available experimental data. The theoretical band positions were found to be significantly improved compared to harmonic Density Functional Theory (DFT) calculations. The band intensities are in reasonable agreement with experiments, the main limitation being the accuracy of the underlying calculations of the quartic force field. This is a first step towards calculating moderately high-temperature spectra of PAHs and other similarly rigid molecules using Monte Carlo sampling.
68 - Bagher Abareshi 2017
Auto-ignition process of stoichiometric mixture of methane-air is investigated using detailed chemical kinetics in a single-zone combustion chamber. Effect of initial temperature on start of combustion (SOC). The Arrhenius expression for the specific reaction rate are calculated and auto-ignition was evaluated based on the species fractions and sensitivity analysis. Our results suggest that the SOC is directly related to initial temperature and the auto-ignition will not occur if the initial temperature low enough.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا