ﻻ يوجد ملخص باللغة العربية
A quantum manifestation of chaotic classical dynamics is found in the framework of oscillatory numbers statistics for the model of nonlinear dissipative oscillator. It is shown by numerical simulation of an ensemble of quantum trajectories that the probability distributions and variances of oscillatory number states are strongly transformed in the order-to-chaos transition. The nonclassical, sub-Poissonian statistics of oscillatory excitation numbers is established for chaotic dissipative dynamics in the framework of Fano factor and Wigner functions. These results are proposed for testing and experimental studing of quantum dissipative chaos.
In this paper, the purity of quantum states is applied to probe chaotic dissipative dynamics. To achieve this goal, a comparative analysis of regular and chaotic regimes of nonlinear dissipative oscillator (NDO) are performed on the base of excitatio
We propose a measure, which we call the dissipative spectral form factor (DSFF), to characterize the spectral statistics of non-Hermitian (and non-Unitary) matrices. We show that DSFF successfully diagnoses dissipative quantum chaos, and reveals corr
Open quantum systems can exhibit complex states, which classification and quantification is still not well resolved. The Kerr-nonlinear cavity, periodically modulated in time by coherent pumping of the intra-cavity photonic mode, is one of the exampl
We propose an anharmonic oscillator driven by two periodic forces of different frequencies as a new time-dependent model for investigating quantum dissipative chaos. Our analysis is done in the frame of statistical ensemble of quantum trajectories in
We study the phenomena at the overlap of quantum chaos and nonclassical statistics for the time-dependent model of nonlinear oscillator. It is shown in the framework of Mandel Q-parameter and Wigner function that the statistics of oscillatory excitat