ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulent Diamagnetism in Flowing Liquid Sodium

59   0   0.0 ( 0 )
 نشر من قبل Erik Spence
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of Ohms law is examined in a turbulent flow of liquid sodium. A magnetic field is applied to the flowing sodium, and the resulting magnetic field is measured. The mean velocity field of the sodium is also measured in an identical-scale water model of the experiment. These two fields are used to determine the terms in Ohms law, indicating the presence of currents driven by a turbulent electromotive force. These currents result in a diamagnetic effect, generating magnetic field in opposition to the dominant fields of the experiment. The magnitude of the fluctuation-driven magnetic field is comparable to that of the field induced by the sodiums mean flow.

قيم البحث

اقرأ أيضاً

We study the flow response to an externally imposed homogeneous magnetic field in a turbulent swirling flow of liquid sodium -- the VKS2 experiment in which magnetic Reynolds numbers Rm up to 50 are reached. Induction effects are larger than in the f ormer VKS1 experiment. At Rm larger than about 25, the local amplitude of induced field components supersedes that of the applied field, and exhibits non-Gaussian fluctuations. Slow dynamical instationarities and low-frequency bimodal dynamics are observed in the induction, presumably tracing back to large scale fluctuations in the hydrodynamic flow.
Collective modes in two-dimensional electron fluids show an interesting response to a background carrier flow. Surface plasmons propagating on top of a flowing Fermi liquid acquire a non-reciprocal character manifest in a $pm k$ asymmetry of mode dis persion. The nonreciprocity arises due to Fermi surface polarization by the flow. The flow-induced interactions between quasiparticles make collective modes of the system uniquely sensitive to subtle motional Fermi-liquid effects. The flow-induced Doppler-type frequency shift of plasmon resonances, arising due to electron interactions, can strongly deviate from the classical value. This opens a possibility to directly probe motional Fermi-liquid effects in plasmonic near-field imaging experiments.
The electrostatic shielding of a charged absorbing object (dust grain) in a flowing collisionless plasma is investigated by using the linearized kinetic equation for plasma ions with a point-sink term accounting for ion absorption on the object. The effect of absorption on the attractive part of the grain potential is investigated. For subthermal ion flows, the attractive part of the grain potential in the direction perpendicular to the ion flow can be significantly reduced or completely destroyed, depending on the absorption rate. For superthermal ion flows, however, the effect of absorption on the grain attraction in the direction perpendicular to the ion flow is shown to be exponentially weak. It is thus argued that, in the limit of superthermal ion flow, the effect of absorption on the grain shielding potential can be safely ignored for typical grain sizes relevant to complex plasmas.
Heat transport in a three-dimensional complex (dusty) plasma was experimentally studied in microgravity conditions using Plasmakristall-4 (PK-4) instrument on board the International Space Station (ISS). An extended suspension of microparticles was l ocally heated by a shear flow created by applying the radiation pressure force of the manipulation-laser beam. Individual particle trajectories in the flow were analysed and from these, using a fluid heat transport equation that takes viscous heating and neutral gas drag into account, the complex plasmas thermal diffusivity and kinematic viscosity were calculated. Their values are compared with previous results reported in ground-based experiments with complex plasmas.
We present laboratory measurements of the interaction between thermoelectric currents and turbulent magnetoconvection. In a cylindrical volume of liquid gallium heated from below and cooled from above and subject to a vertical magnetic field, it is f ound that the large scale circulation (LSC) can undergo a slow axial precession. Our experiments demonstrate that this LSC precession occurs only when electrically conducting boundary conditions are employed, and that the precession direction reverses when the axial magnetic field direction is flipped. A novel thermoelectric magnetoconvection (TEMC) model is developed that successfully predicts the zeroth-order magnetoprecession dynamics. Our TEMC magnetoprecession model hinges on thermoelectric current loops at the top and bottom boundaries, which create Lorentz forces that generate horizontal torques on the overturning large-scale circulatory flow. The thermoelectric torques in our model act to drive a precessional motion of the LSC. This model yields precession frequencies predictions that are in good agreement with the experimental observations. We postulate that thermoelectric effects in convective flows, long argued to be relevant in liquid metal heat transfer and mixing processes, may also have applications in planetary interior magnetohydrodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا