ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Results from an Antineutrino Detector for Cooperative Monitoring of Nuclear Reactors

63   0   0.0 ( 0 )
 نشر من قبل Nathaniel Bowden
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our collaboration has designed, installed, and operated a compact antineutrino detector at a nuclear power station, for the purpose of monitoring the power and plutonium content of the reactor core. This paper focuses on the basic properties and performance of the detector. We describe the site, the reactor source, and the detector, and provide data that clearly show the expected antineutrino signal. Our data and experience demonstrate that it is possible to operate a simple, relatively small, antineutrino detector near a reactor, in a non-intrusive and unattended mode for months to years at a time, from outside the reactor containment, with no disruption of day-to-day operations at the reactor site. This unique real-time cooperative monitoring capability may be of interest for the International Atomic Energy Agency (IAEA) reactor safeguards program and similar regimes.



قيم البحث

اقرأ أيضاً

276 - C. Lane , S.M. Usman , J. Blackmon 2015
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the Reactor Anti neutrino Anomaly. NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a Raghavan Optical Lattice (ROL) consisting of 3375 boron or $^6$Li loaded plastic scintillator cubical cells 6.3,cm (2.500) on a side. Cell boundaries have a 0.127,mm (0.005) air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
194 - M. Osipenko , M. Ripani , G. Ricco 2015
In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$times 10^{-4}$ to 3.5$times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.
140 - Miriam Giorgini 2008
The nuclear track detector CR39 was calibrated with different ions of different energies. Due to the low detection threshold (Z/beta~6e) and the good charge resolution (sigma_Z ~ 0.2e for 6e < Z/beta <83e with 2 measurements), the detector was used f or different purposes: (i) fragmentation of high and medium energy ions; (ii) search for magnetic monopoles, nuclearites, strangelets and Q-balls in the cosmic radiation.
We regard the possibility of detecting the antineutrino flux producing by the $^{40}$K placing inside the Earth. Thermal flux of the Earth could be better understood with observing such a flux. Lower and upper limitations on the $^{40}$K antineutrino flux are presented.
Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earths surface information about natural radioactivity in the whole planet. In this framework we provide a refer ence worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of 10 years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا