ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of High Energy Heavy-Ion Collisions in a Relativistic BUU-Approach with Momentum-Dependent Mean-Fields

43   0   0.0 ( 0 )
 نشر من قبل Stefan Teis
 تاريخ النشر 1993
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce momentum-dependent scalar and vector fields into the Lorentz covariant relativistic BUU- (RBUU-) approach employing a polynomial ansatz for the relativistic nucleon-nucleon interaction. The momentum-dependent parametrizations are shown to be valid up to about 1 GeV/u for the empirical proton-nucleus optical potential. We perform numerical simulations for heavy-ion collisions within the RBUU-approach adopting momentum-dependent and momentum-independent mean-fields and calculate the transverse flow in and perpendicular to the reaction plane, the directivity distribution as well as subthreshold K+-production. By means of these observables we discuss the particular role of the momentum-dependent forces and their implications on the nuclear equation of state. We find that only a momentum-dependent parameter-set can explain the experimental data on the transverse flow in the reaction plane from 150 - 1000 MeV/u and the differential K+-production cross sections at 1 GeV/u at the same time.

قيم البحث

اقرأ أيضاً

A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a pre-thermal dynamics which is not completely understood yet. In the paper we employ a recently devel oped energy-momentum transport model of the pre-thermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.
We propose the skewness of mean transverse momentum, $langle p_t rangle$, fluctuations as a fine probe of hydrodynamic behavior in relativistic nuclear collisions. We describe how the skewness of the $langle p_t rangle$ distribution can be analyzed e xperimentally, and we use hydrodynamic simulations to predict its value. We predict in particular that $langle p_t rangle$ fluctuations have positive skew, which is significantly larger than if particles were emitted independently. We elucidate the origin of this result by deriving generic formulas relating the fluctuations of $langle p_t rangle$ to the fluctuations of the early-time thermodynamic quantities. We postulate that the large positive skewness of $langle p_t rangle$ fluctuations is a generic prediction of hydrodynamic models.
We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in textit{A}+textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generaliz ed relaxation time ($tau_{text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $tau_{text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.
We review integrated dynamical approaches to describe heavy ion reaction as a whole at ultrarelativistic energies. Since final observables result from all the history of the reaction, it is important to describe all the stages of the reaction to obta in the properties of the quark gluon plasma from experimental data. As an example of these approaches, we develop an integrated dynamical model, which is composed of a fully (3+1) dimensional ideal hydrodynamic model with the state-of-the-art equation of state based on lattice QCD, and subsequent hadronic cascade in the late stage. Initial conditions are obtained employing Monte Car
65 - F. Becattini 2017
We study the polarization of particles in relativistic heavy-ion collisions at very high energy along the beam direction within a relativistic hydrodynamic framework. We show that this component of the polarization decreases much slower with center-o f-mass energy compared to the transverse component, even in the ideal longitudinal boost-invariant scenario with non-fluctuating initial state, and that it can be measured by taking advantage of its quadrupole structure in the transverse momentum plane. In the ideal longitudinal boost-invariant scenario, the polarization is proportional to the gradient of temperature at the hadronization and its measurement can provide important information about the cooling rate of the Quark Gluon Plasma around the critical temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا