ترغب بنشر مسار تعليمي؟ اضغط هنا

Ortho-para transition rate in $mu$-molecular hydrogen and the protons induced pseudoscalar coupling $g_p$

84   0   0.0 ( 0 )
 نشر من قبل Gorringe
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a measurement of the ortho-para transition rate in the p$mu$p molecule. The experiment was conducted at TRIUMF via the measurement of the time dependence of the 5.2 MeV neutrons from muon capture in liquid hydrogen. The measurement yielded an ortho-para rate $Lambda_{op} = (11.1 pm 1.7 pm^{0.9}_{0.6}) times 10^4$ s$^{-1}$ that is substantially larger than the earlier result of Bardin {it et al.} We discuss the striking implications for the protons induced pseudoscalar coupling $g_p$.



قيم البحث

اقرأ أيضاً

The rate of nuclear muon capture by the proton has been measured using a new experimental technique based on a time projection chamber operating in ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture rate was obtained from the difference between the measured $mu^-$ disappearance rate in hydrogen and the world average for the $mu^+$ decay rate. The targets low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the $mu p$ atom is measured to be $Lambda_S=725.0 pm 17.4 s^{-1}$, from which the induced pseudoscalar coupling of the nucleon, $g_P(q^2=-0.88 m_mu^2)=7.3 pm 1.1$, is extracted. This result is consistent with theoretical predictions for $g_P$ that are based on the approximate chiral symmetry of QCD.
137 - C. Cazorla , J. Boronat 2008
We study molecular para-hydrogen (p-${rm H_{2}}$) and ortho-deuterium (o-${rm D_{2}}$) in two dimensions and in the limit of zero temperature by means of the diffusion Monte Carlo method. We report energetic and structural properties of both systems like the total and kinetic energy per particle, radial pair distribution function, and Lindemanns ratio in the low pressure regime. By comparing the total energy per particle as a function of the density in liquid and solid p-${rm H_{2}}$, we show that molecular para-hydrogen, and also ortho-deuterium, remain solid at zero temperature. Interestingly, we assess the quality of three different symmetrized trial wave functions, based on the Nosanow-Jastrow model, in the p-${rm H_{2}}$ solid film at the variational level. In particular, we analyze a new type of symmetrized trial wave function which has been used very recently to describe solid $^{4}$He and found that also characterizes hydrogen satisfactorily. With this wave function, we show that the one-body density matrix $varrho_{1} (r)$ of solid p-${rm H_{2}}$ possesses off-diagonal long range order, with a condensate fraction that increases sizably in the negative pressure regime.
The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. L_S is determined from the difference between the mu- disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1 and derive the protons pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06 +- 0.55.
We report a quantitative experimental study of the crystallization kinetics of supercooled quantum liquid mixtures of para-hydrogen (pH$_2$) and ortho-deuterium (oD$_2$) by high spatial resolution Raman spectroscopy of liquid microjets. We show that in a wide range of compositions the crystallization rate of the isotopic mixtures is significantly reduced with respect to that of the pure substances. To clarify this behavior we have performed path-integral simulations of the non-equilibrium pH$_2$-oD$_2$ liquid mixtures, revealing that differences in quantum delocalization between the two isotopic species translate into different effective particle sizes. Our results provide first experimental evidence for crystallization slowdown of quantum origin, offering a benchmark for theoretical studies of quantum behavior in supercooled liquids.
68 - M. Duer , O. Hen , E. Piasetzky 2018
This paper presents, for the first time, measurements of neutron transparency ratios for nuclei relative to C measured using the (e,en) reaction, spanning measured neutron momenta of 1.4 to 2.4 GeV/c. The transparency ratios were extracted in two kin ematical regions, corresponding to knockout of mean-field nucleons and to the breakup of Short-Range Correlated nucleon pairs. The extracted neutron transparency ratios are consistent with each other for the two measured kinematical regions and agree with the proton transparencies extracted from new and previous (e,ep) measurements, including those from neutron-rich nuclei such as lead. The data also agree with and confirm the Glauber approximation that is commonly used to interpret experimental data. The nuclear-mass-dependence of the extracted transparencies scales as A^{alpha} with {alpha} = -0.289 {pm} 0.007, which is consistent with nuclear-surface dominance of the reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا