ﻻ يوجد ملخص باللغة العربية
The author showed that a sequence in the unit disk is a zero sequence for the Bergman space $A^p$ if and only if a certain weighted space $L^p(W}$ contains a nontrivial analytic function. In this paper it is shown that the sequence is an interpolating sequence for $A^p$ if and only if it is separated in the hyperbolic metric and the $barpartial$-equation $(1 - |z|^2)barpartial u = f$ has a solution $u$ belonging to $L^p(W)$ for every $f$ in $L^p(W)$.
We obtain sharp ranges of $L^p$-boundedness for domains in a wide class of Reinhardt domains representable as sub-level sets of monomials, by expressing them as quotients of simpler domains. We prove a general transformation law relating $L^p$-bounde
A class of pseudoconvex domains in $mathbb{C}^{n}$ generalizing the Hartogs triangle is considered. The $L^p$ boundedness of the Bergman projection associated to these domains is established, for a restricted range of $p$ depending on the fatness of domains. This range of $p$ is shown to be sharp.
Regularity and irregularity of the Bergman projection on $L^p$ spaces is established on a natural family of bounded, pseudoconvex domains. The family is parameterized by a real variable $gamma$. A surprising consequence of the analysis is that, whene
We study almost sure separating and interpolating properties of random sequences in the polydisc and the unit ball. In the unit ball, we obtain the 0-1 Komolgorov law for a sequence to be interpolating almost surely for all the Besov-Sobolev spaces $